Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar mystery solved

03.03.2011
The Sun has been in the news a lot lately because it's beginning to send out more flares and solar storms.

Its recent turmoil is particularly newsworthy because the Sun was very quiet for an unusually long time. Astronomers had a tough time explaining the extended solar minimum. New computer simulations imply that the Sun's long quiet spell resulted from changing flows of hot plasma within it.

"The Sun contains huge rivers of plasma similar to Earth's ocean currents," says Andres Munoz-Jaramillo, a visiting research fellow at the Harvard-Smithsonian Center for Astrophysics (CfA). "Those plasma rivers affect solar activity in ways we're just beginning to understand."

The Sun is made of a fourth state of matter - plasma, in which negative electrons and positive ions flow freely. Flowing plasma creates magnetic fields, which lie at the core of solar activity like flares, eruptions, and sunspots.

Astronomers have known for decades that the Sun's activity rises and falls in a cycle that lasts 11 years on average. At its most active, called solar maximum, dark sunspots dot the Sun's surface and frequent eruptions send billions of tons of hot plasma into space. If the plasma hits Earth, it can disrupt communications and electrical grids and short out satellites.

During solar minimum, the Sun calms down and both sunspots and eruptions are rare. The effects on Earth, while less dramatic, are still significant. For example, Earth's outer atmosphere shrinks closer to the surface, meaning there is less drag on orbiting space junk. Also, the solar wind that blows through the solar system (and its associated magnetic field) weakens, allowing more cosmic rays to reach us from interstellar space.

The most recent solar minimum had an unusually long number of spotless days: 780 days during 2008-2010. In a typical solar minimum, the Sun goes spot-free for about 300 days, making the last minimum the longest since 1913.

"The last solar minimum had two key characteristics: a long period of no sunspots and a weak polar magnetic field," explains Munoz-Jaramillo. (A polar magnetic field is the magnetic field at the Sun's north and south poles.) "We have to explain both factors if we want to understand the solar minimum."

To study the problem, Munoz-Jaramillo used computer simulations to model the Sun's behavior over 210 activity cycles spanning some 2,000 years. He specifically looked at the role of the plasma rivers that circulate from the Sun's equator to higher latitudes. These currents flow much like Earth's ocean currents: rising at the equator, streaming toward the poles, then sinking and flowing back to the equator. At a typical speed of 40 miles per hour, it takes about 11 years to make one loop.

Munoz-Jaramillo and his colleagues discovered that the Sun's plasma rivers speed up and slow down like a malfunctioning conveyor belt. They find that a faster flow during the first half of the solar cycle, followed by a slower flow in the second half of the cycle, can lead to an extended solar minimum. The cause of the speed-up and slowdown likely involves a complicated feedback between the plasma flow and solar magnetic fields.

"It's like a production line - a slowdown puts 'distance' between the end of the last solar cycle and the start of the new one," says Munoz-Jaramillo.

The ultimate goal of studies like this is to predict upcoming solar maxima and minima - both their strength and timing. The team focused on simulating solar minima, and say that they can't forecast the next solar minimum (which is expected to occur in 2019) just yet.

"We can't predict how the flow of these plasma rivers will change," explains lead author Dibyendu Nandy (Indian Institute of Science Education and Research, Kolkata). "Instead, once we see how the flow is changing, we can predict the consequences."

Christine Pulliam | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>