Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar experts detect waves in giant magnetic holes the size of the UK

25.02.2011
Massive waves in giant magnetic holes on the surface of the Sun have been discovered for the first time by solar scientists from the University of Sheffield and Queen´s University Belfast, something that will bring experts a step closer to unlocking the secrets of the Sun.

The Sun is interwoven by a complex network of magnetic field lines that are responsible for a large variety of fascinating features that can be seen in the solar atmosphere. Large, dark regions, which look like holes on the Sun´s surface, mark out areas where the magnetic field breaks through from the Sun´s deep, boiling interior and rises into the very hot solar atmosphere, which is over a million degrees. The largest of these dark regions are often called sunspots and have been studied since their discovery from as early as 364 BC.

Led by Professor Robertus von Fay-Siebenburgen, Head of the Solar Physics and Space Plasma Research Centre (SP2RC) at the University of Sheffield, the team studied a magnetic region of the Sun much smaller than a sunspot, however its size was still many times greater than the size of the UK.

Their research, which was published this week in Astrophysical Journal, has shown that the magnetic hole they observed, which is also known as a pore, is able to channel energy generated deep inside the Sun, along the magnetic field to the Sun´s upper atmosphere. The magnetic field emerging through the pore is over 1,000 times stronger than the magnetic field of the Earth.

The energy being transported is in the form of a very special form of waves, known as `sausage waves´ which the scientists were able to observe using a UK-built solar imager known as ROSA (Rapid Oscillations of the Solar Atmosphere), which was designed by Queen´s University Belfast and is in operation at the Dunn Solar Telescope, Sacramento Peak, USA. This is the first direct observation of `sausage waves´ at the solar surface. The magnetic hole is seen to increase and decrease in size periodically which is a characteristic feature of the `sausage wave.´

The team of experts, including Dr Richard Morton from the University of Sheffield, as well as Professor Mihalis Mathioudakis and Dr David Jess from Queen´s University Belfast, hope these giant magnetic holes will play an important role in unveiling the longstanding secrets behind solar coronal heating.

This is because the solar surface has a temperature of a few thousand degrees but the solar corona - the outermost, mysterious, and least understood layer of the Sun's atmosphere - is heated to temperatures often a thousand times hotter than the surface. Why the temperature of the Sun´s atmosphere increases as we move further away from the centre of energy production, which lies under the surface, is a great mystery of astrophysics. The findings, which demonstrate the transfer of energy on a massive scale, offer a new explanation for this puzzle.

The team now hope to use further similar solar images from ROSA to understand the fine substructure of these massive magnetic holes by reconstructing the images to view what is inside the holes.

Professor Robertus von Fay-Siebenburgen, said: "This is a fascinating new discovery in line with a number of discoveries made in recent years by the team. It is the first time that `sausage waves´ have been detected in the Sun with such detail. Analysing these waves may bring us closer to understanding the physical mechanisms in the atmosphere of a star.

"I am very proud that such talented young researchers like Richard and Dave have shown such a serious commitment in bringing us closer to unveiling the secrets of the Sun. We´re also very pleased that Professor Keenan and the Queen´s University Belfast solar team were able to build such a wonderful instrument that allows us to make unprecedented observations with relatively low costs."

The news comes as part of the University of Sheffield´s unique venture entitled Project Sunshine, led by the Faculty of Science. SP2RC plays a key role in Project Sunshine, which aims to unite scientists across the traditional boundaries in both the pure and applied sciences to harness the power of the Sun and tackle the biggest challenge facing the world today: meeting the increasing food and energy needs of the world´s population in the context of an uncertain climate and global environment change.

Notes for Editors: To view the research paper entitled `Observations of Sausage Modes in Magnetic Pores´ visit the link below.

Project Sunshine, led by the Faculty of Science at the University of Sheffield aims to unite scientists across the traditional boundaries in both the pure and applied sciences to harness the power of the Sun and tackle the biggest challenge facing the world today: meeting the increasing food and energy needs of the world´s population in the context of an uncertain climate and global environment change. It is hoped that Project Sunshine will change the way scientists think and work and become the inspiration for a new generation of scientists focused on solving the world´s problems. The first international Project Sunshine conference, Shine, will take place from 13-14 September 2011 at Sheffield City Hall. For more information, visit the link below.

For further information please contact: Shemina Davis, Media Relations Officer, on 0114 2225339 or email shemina.davis@sheffield.ac.uk

Shemina Davis | EurekAlert!
Further information:
http://www.sheffield.ac.uk
http://www.shef.ac.uk/mediacentre/2011/1849-sun-waves-magnetic-solar.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>