Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar corona revealed in super-high-definition

23.07.2012
Today, astronomers are releasing the highest-resolution images ever taken of the Sun's corona, or million-degree outer atmosphere, in an extreme-ultraviolet wavelength of light.

The 16-megapixel images were captured by NASA's High Resolution Coronal Imager, or Hi-C, which was launched on a sounding rocket on July 11th. The Hi-C telescope provides five times more detail than the next-best observations by NASA's Solar Dynamics Observatory.


These photos of the solar corona, or million-degree outer atmosphere, show the improvement in resolution offered by NASA's High Resolution Coronal Imager, or Hi-C (bottom), versus the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory (top). Both images show a portion of the sun's surface roughly 85,000 by 50,000 miles in size. Hi-C launched on a sounding rocket on July 11, 2012 in a flight that lasted about 10 minutes. The representative-color images were made from observations of ultraviolet light at a wavelength of 19.3 nanometers (25 times shorter than the wavelength of visible light).

Credit: NASA

"Even though this mission was only a few minutes long, it marks a big breakthrough in coronal studies," said Smithsonian astronomer Leon Golub (Harvard-Smithsonian Center for Astrophysics), one of the lead investigators on the mission.

Understanding the Sun's activity and its effects on Earth's environment was the critical scientific objective of Hi-C, which provided unprecedented views of the dynamic activity and structure in the solar atmosphere.

The corona surrounds the visible surface of the Sun. It's filled with million-degree ionized gas, or plasma, so hot that the light it emits is mainly at X-ray and extreme-ultraviolet wavelengths. For decades, solar scientists have been trying to understand why the corona is so hot, and why it erupts in violent solar flares and related blasts known as "coronal mass ejections," which can produce harmful effects when they hit Earth. The Hi-C telescope was designed and built to see the extremely fine structures thought to be responsible for the Sun's dynamic behavior.

"The phrase 'think globally, act locally' applies to the Sun too. Things happening at a small, local scale can impact the entire Sun and result in an eruption," explained Golub.

Hi-C focused on an active region on the Sun near sunspot NOAA 1520. The target, which was finalized on launch day, was selected specifically for its large size and active nature. The resulting high-resolution snapshots, at a wavelength of 19.3 nanometers (25 times shorter than the wavelength of visible light), reveal tangled magnetic fields channeling the solar plasma into a range of complex structures.

"We have an exceptional instrument and launched at the right time," said Jonathan Cirtain, senior heliophysicist at NASA's Marshall Space Flight Center. "Because of the intense solar activity we're seeing right now, we were able to clearly focus on a sizeable, active sunspot and achieve our imaging goals."

Since Hi-C rode on a suborbital rocket, its flight lasted for just 10 minutes. Of that time, only about 330 seconds were spent taking data. Yet those images contain a wealth of information that astronomers will analyze for months to come.

"The Hi-C flight might be the most productive five minutes I've ever spent," Golub smiled.

The high-resolution images were made possible because of a set of innovations on Hi-C's telescope, which directs light to the camera detector. The telescope includes some of the finest mirrors ever made for a space mission. Initially developed at NASA's Marshall Space Flight Center in Huntsville, Ala., the mirrors were completed with inputs from partners at the Smithsonian Astrophysical Observatory (SAO) in Cambridge, Mass., and a new manufacturing technique developed in coordination with L-3Com/Tinsley Laboratories of Richmond, Calif. The mirrors were made to reflect extreme-ultraviolet light from the Sun by Reflective X-ray Optics LLC of New York, NY, and the telescope was assembled at the SAO labs in Cambridge, Mass.

Christine Pulliam | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>