Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar corona revealed in super-high-definition

23.07.2012
Today, astronomers are releasing the highest-resolution images ever taken of the Sun's corona, or million-degree outer atmosphere, in an extreme-ultraviolet wavelength of light.

The 16-megapixel images were captured by NASA's High Resolution Coronal Imager, or Hi-C, which was launched on a sounding rocket on July 11th. The Hi-C telescope provides five times more detail than the next-best observations by NASA's Solar Dynamics Observatory.


These photos of the solar corona, or million-degree outer atmosphere, show the improvement in resolution offered by NASA's High Resolution Coronal Imager, or Hi-C (bottom), versus the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory (top). Both images show a portion of the sun's surface roughly 85,000 by 50,000 miles in size. Hi-C launched on a sounding rocket on July 11, 2012 in a flight that lasted about 10 minutes. The representative-color images were made from observations of ultraviolet light at a wavelength of 19.3 nanometers (25 times shorter than the wavelength of visible light).

Credit: NASA

"Even though this mission was only a few minutes long, it marks a big breakthrough in coronal studies," said Smithsonian astronomer Leon Golub (Harvard-Smithsonian Center for Astrophysics), one of the lead investigators on the mission.

Understanding the Sun's activity and its effects on Earth's environment was the critical scientific objective of Hi-C, which provided unprecedented views of the dynamic activity and structure in the solar atmosphere.

The corona surrounds the visible surface of the Sun. It's filled with million-degree ionized gas, or plasma, so hot that the light it emits is mainly at X-ray and extreme-ultraviolet wavelengths. For decades, solar scientists have been trying to understand why the corona is so hot, and why it erupts in violent solar flares and related blasts known as "coronal mass ejections," which can produce harmful effects when they hit Earth. The Hi-C telescope was designed and built to see the extremely fine structures thought to be responsible for the Sun's dynamic behavior.

"The phrase 'think globally, act locally' applies to the Sun too. Things happening at a small, local scale can impact the entire Sun and result in an eruption," explained Golub.

Hi-C focused on an active region on the Sun near sunspot NOAA 1520. The target, which was finalized on launch day, was selected specifically for its large size and active nature. The resulting high-resolution snapshots, at a wavelength of 19.3 nanometers (25 times shorter than the wavelength of visible light), reveal tangled magnetic fields channeling the solar plasma into a range of complex structures.

"We have an exceptional instrument and launched at the right time," said Jonathan Cirtain, senior heliophysicist at NASA's Marshall Space Flight Center. "Because of the intense solar activity we're seeing right now, we were able to clearly focus on a sizeable, active sunspot and achieve our imaging goals."

Since Hi-C rode on a suborbital rocket, its flight lasted for just 10 minutes. Of that time, only about 330 seconds were spent taking data. Yet those images contain a wealth of information that astronomers will analyze for months to come.

"The Hi-C flight might be the most productive five minutes I've ever spent," Golub smiled.

The high-resolution images were made possible because of a set of innovations on Hi-C's telescope, which directs light to the camera detector. The telescope includes some of the finest mirrors ever made for a space mission. Initially developed at NASA's Marshall Space Flight Center in Huntsville, Ala., the mirrors were completed with inputs from partners at the Smithsonian Astrophysical Observatory (SAO) in Cambridge, Mass., and a new manufacturing technique developed in coordination with L-3Com/Tinsley Laboratories of Richmond, Calif. The mirrors were made to reflect extreme-ultraviolet light from the Sun by Reflective X-ray Optics LLC of New York, NY, and the telescope was assembled at the SAO labs in Cambridge, Mass.

Christine Pulliam | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>