Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil Studies Continue at Phoenix Mars Lander Site

12.08.2008
Vibration of the screen above a laboratory oven on NASA's Phoenix Mars Lander on Saturday, Aug. 9, succeeded in getting enough soil into the oven to begin analysis. Commands were sent for the lander's Thermal and Evolved-Gas Analyzer (TEGA) to begin analysis Sunday of the soil sample from a trench called "Rosy Red."

Phoenix's robotic arm delivered soil Thursday from the Rosy Red trench through a narrow opening to a screen above the No. 5 oven on the lander's TEGA. A few particles of the sample passed through the screen on Thursday, but not enough to fill the oven and allow analysis of the sample to begin.

The Phoenix team sent commands for TEGA to vibrate the screen again on Friday, and more material reached the oven, though still not enough to proceed with analysis.

"There appear to be clumps blocking the opening," Doug Ming of NASA Johnson Space Center, Houston, the Phoenix team's science lead, said on Friday.

"However, we have seen in the past that when this soil sits for a while, it disperses. We intend to fill an oven with this material, either by additional vibration of the same screen or by opening doors to one of the other TEGA cells."

Friday activities by the spacecraft included extending the width of an exploratory trench informally named "Neverland," which extends between two rocks on the surface of the ground.

The lander last week also made overnight measurements of conductivity in the Martian soil. The conductivity measurements completed Wednesday, Aug. 6, ran from the afternoon of Phoenix's 70th Martian day, or sol, after landing to the morning of Sol 71. A fork-like probe inserted into the soil checks how well heat and electricity move through the soil from one prong to another.

The Phoenix mission is led by Peter Smith from The University of Arizona with project management at JPL, and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute. The California Institute of Technology in Pasadena manages JPL for NASA.

MEDIA CONTACTS:
Sara Hammond
University of Arizona
520-626-4402
shammond@lpl.arizona.edu
Veronica McGregor/Guy Webster
NASA Jet Propulsion Lab
818-354-5011
veronica.mcgregor@jpl.nasa. gov
guy.webster@jpl.nasa.gov
Dwayne Brown
NASA Headquarters, Washington
202-358-1726
dwayne.c.brown@nasa.gov

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

Further reports about: Evolved-Gas Analyzer Mars Martian NASA PHOENIX Phoenix Mars Lander Space Space Center TEGA

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>