Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil Studies Continue at Phoenix Mars Lander Site

12.08.2008
Vibration of the screen above a laboratory oven on NASA's Phoenix Mars Lander on Saturday, Aug. 9, succeeded in getting enough soil into the oven to begin analysis. Commands were sent for the lander's Thermal and Evolved-Gas Analyzer (TEGA) to begin analysis Sunday of the soil sample from a trench called "Rosy Red."

Phoenix's robotic arm delivered soil Thursday from the Rosy Red trench through a narrow opening to a screen above the No. 5 oven on the lander's TEGA. A few particles of the sample passed through the screen on Thursday, but not enough to fill the oven and allow analysis of the sample to begin.

The Phoenix team sent commands for TEGA to vibrate the screen again on Friday, and more material reached the oven, though still not enough to proceed with analysis.

"There appear to be clumps blocking the opening," Doug Ming of NASA Johnson Space Center, Houston, the Phoenix team's science lead, said on Friday.

"However, we have seen in the past that when this soil sits for a while, it disperses. We intend to fill an oven with this material, either by additional vibration of the same screen or by opening doors to one of the other TEGA cells."

Friday activities by the spacecraft included extending the width of an exploratory trench informally named "Neverland," which extends between two rocks on the surface of the ground.

The lander last week also made overnight measurements of conductivity in the Martian soil. The conductivity measurements completed Wednesday, Aug. 6, ran from the afternoon of Phoenix's 70th Martian day, or sol, after landing to the morning of Sol 71. A fork-like probe inserted into the soil checks how well heat and electricity move through the soil from one prong to another.

The Phoenix mission is led by Peter Smith from The University of Arizona with project management at JPL, and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute. The California Institute of Technology in Pasadena manages JPL for NASA.

MEDIA CONTACTS:
Sara Hammond
University of Arizona
520-626-4402
shammond@lpl.arizona.edu
Veronica McGregor/Guy Webster
NASA Jet Propulsion Lab
818-354-5011
veronica.mcgregor@jpl.nasa. gov
guy.webster@jpl.nasa.gov
Dwayne Brown
NASA Headquarters, Washington
202-358-1726
dwayne.c.brown@nasa.gov

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

Further reports about: Evolved-Gas Analyzer Mars Martian NASA PHOENIX Phoenix Mars Lander Space Space Center TEGA

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>