Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soap films help to solve mathematical problems

Soap bubbles and films have always fascinated children and adults, but they can also serve to solve complex mathematical calculations. This is shown by a study carried out by two professors at the University of Málaga, who have succeeded in solving classic problems using just such an innovative procedure.

"With the aid of soap films we have solved variational mathematical problems, which appear in the formulation of many physical problems", explains Carlos Criado, professor at the University of Málaga, speaking to SINC. Together with his colleague Nieves Álamo, he has just published his work in the American Journal of Physics.

Soap films always adopt the shape which minimises their elastic energy, and therefore their area, so that they turn out to be ideal in the calculus of variations, "where we look for a function that minimises a certain quantity (depending on the function)", adds the researcher.

"Of course there are other ways to solve variational problems, but it turns out to be surprising, fun and educative to obtain soap films in the shape of brachistochrones, catenaries and semicircles", Criado emphasises.

The professor offers the example of the famous problem of the brachistochrone curve. What shape must a wire be in order that a ball travels down it from one end to the other (at a different height) as rapidly as possible? The answer is the brachistochrone (from the Greek brachistos, the shortest, and cronos, time), the curve of fastest descent.

New methods for old problems

The mathematician Johann Bernoulli found the answer centuries ago when he realised that it was a cycloid (the curve described by a point on a circle rolling along a line). That was the origin of the calculus of variations, which was also used in other classic problems, like that of the catenary (the shape of a chain suspended by its endpoints) and the isoperimetric curve (a curve which maximises the area it encloses).

The study shows that these calculations may be related to Plateau's problem, that is, to find the shape adopted by a soap film under certain boundary restrictions. Besides, the researchers show how to design the experiments, constraining the soap films between two surfaces in such a way as to obtain the appropriate curves.

Other Spanish researchers, like Isabel Fernández, of the University of Seville, and Pablo Mira, of the Polytechnic University of Cartagena, have succeeded in finding for the first time the solution to specific mathematical problems (the Bernstein problem in the Heisenberg space) with the help of soap films.

References: C. Criado y N. Alamo. "Solving the brachistochrone and other variational problems with soap films". American Journal of Physics 78 (12): 1400-1405, diciembre de 2010.

SINC | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>