Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snowballs to soot: The clumping density of many things seems to be a standard

11.06.2014

Particles of soot floating through the air and comets hurtling through space have at least one thing in common: 0.36. That, reports a research group at the National Institute of Standards and Technology (NIST), is the measure of how dense they will get under normal conditions, and it's a value that seems to be constant for similar aggregates across an impressively wide size range from nanometers to tens of meters.*

NIST hopes the results will help in the development of future measurement standards to aid climate researchers and others who need to measure and understand the behavior of aerosols like carbon soot in the atmosphere.

Soot comes mostly from combustion and is considered the second biggest driver of global warming, according to NIST chemist Christopher Zangmeister. It is made up of small round particles of carbon about 10 or 20 nanometers across. The particles stick together randomly in short chains and clumps of a half dozen or more spheres. These, in turn, clump loosely together to form larger, loose aggregates of 10 or more which over a few hours will compact into a somewhat tighter ball which is atmospheric soot.

The interesting question for chemists studying carbon aerosols is how tight? How dense? Among other things, the answer relates to the balance of climate effects from soot: heating from light absorption versus cooling from light reflection.

The maximum packing density of objects is a classic problem in mathematics, which has been fully solved for only the simplest cases. The assumed density in models of atmospheric soot is 0.74, which is the maximum packing density of perfect spheres, such as billiard balls, in a given space. But when Zangmeister's team made measurements of the packing density of actual soot particles, the figure they got was 0.36. "We figured, man, we've got to be wrong, we're off by a factor of two," Zangmeister recalls, but "a bunch more measurements" convinced them that 0.36 was correct. Why?

Enter the summer help. Two students, one in college and one in high school, who were working with Zangmeister's group last summer were set to the task of modeling the packing question with little 6 mm plastic spheres sold for pellet guns. They glued thousands of random combinations of spheres together in clumps of from 1 to 12 spheres, and then filled every available size of graduated cylinders and hollow spheres with their assemblies, over and over, and over.

Their charted results, as a function of clump size, form a curve that levels off at … 0.36.

It gets better. Inspired by a book on the solar system he was reading with his son, Zangmeister checked NASA's literature. Comets are formed very much the same way as soot particles, except out of dust and ice, and they're a lot bigger. NASA's measurements on a collection of 20 comets estimate that packing density at between 0.2 and 0.4. So 0.36 may be an all-purpose value.**

NIST's interest in the nature of soot particles is driven by a desire to imitate them, according to Zangmeister. "It's amazing how much uncertainty there is in optical measurements of particles in the atmosphere. The reason for this uncertainty is rooted in something really important to NIST: there are no real methods for calibrations. You can calibrate any CO2 measurement using one of our Standard Reference Materials for CO2 in air, but there's no such thing as a bottle of standard aerosol or a standard aerosol generator. That's really at the heart of what we're trying to do: make a black material that simulates carbon that you can put into an aerosol and know it will come out the same way every time. It's a real materials chemistry project."

The agency is working with the National Research Council of Canada and Environment Canada on the project.

###

*C.D. Zangmeister, J.G. Radney, L.T. Dockery, J.T. Young, X. Ma, R. You and M.R. Zachariah., The packing density of rigid aggregates is independent of scale. PNAS Early Edition. Published online June 9, 2014. doi:10.1073/pnas.1403768111.

**0.36 is also very close to the reported values for compacted silicon dioxide monomers (ceramics industry) and pharmaceutical powders made from "microscale random aggregates."

Michael Baum | Eurek Alert!

Further reports about: NIST aggregates atmosphere bottle clumps heating measurement measurements microscale particles soot

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>