Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sniffing Out Shoe Bombs: A New Sensor for Explosive Chemicals

19.10.2010
University of Illinois chemists have developed a simple sensor to detect an explosive used in shoe bombs. It could lead to inexpensive, easy-to-use devices for luggage and passenger screening at airports and elsewhere.

SuslickTriacetone triperoxide (TATP) is a high-powered explosive that in recent years has been used in several bombing attempts. TATP is easy to prepare from readily available components and has been difficult to detect. It defies most standard methods of chemical sensing: It doesn’t fluoresce, absorb ultraviolet light or readily ionize.

The few methods available to screen for TATP aren’t feasible for on-the-ground use in airports, as they require large, expensive equipment, extensive sample preparation, or relatively high concentrations of TATP in solid or liquid form. There is no simple way to detect TATP vapor.

Kenneth Suslick, the Schmidt Professor of Chemistry at the U. of I., and postdoctoral researcher Hengwei Lin have developed a colorimetric sensor array that can quantitatively detect even very low levels of TATP vapor – down to a mere 2 parts per billion. They wrote about their findings in an article published in the Journal of the American Chemical Society.

To create the sensor array, the researchers print a series of 16 tiny colored dots – each a different pigment – on an inert plastic film. A solid acid catalyst breaks down TATP into detectable components that cause the pigments to change color, like litmus paper.

Each pigment changes colors depending on the concentration of TATP in the air. The array is digitally imaged with an ordinary flatbed scanner or an inexpensive electronic camera before and after exposure to the air.

“Imagine a polka-dotted postage stamp sensor that can sniff out the shoe-bomber explosive simply by using a digital camera to measure the changing colors of the sensor’s spots,” Suslick said. “The pattern of the color change is a unique molecular fingerprint for TATP at any given concentration and we can identify it in a matter of seconds.”

The array is uniquely sensitive to TATP. Unlike many other chemical sensors, Suslick and Lin’s array is unaffected by changes in humidity or exposure to other chemicals, such as personal hygiene products or laundry detergents. It also has a long shelf life, so airport security and other users can keep a supply on hand.

In addition to demonstrating their sensing technique with an ordinary flatbed scanner, the researchers also developed a functional prototype handheld device. The portable instrument, designed to easily screen luggage or shoes, uses inexpensive white LED illumination and an ordinary digital camera similar to a cell-phone camera.

“The handheld device makes the whole process portable, sensitive, fast and inexpensive,” Suslick said. The handheld sensor now is being commercialized by iSense, a senor manufacturer based in Palo Alto, Calif.

“One of the nice things about this technology is that it uses components that are readily available and relatively inexpensive,” said David Balshaw, Ph.D. program administrator at National Institute of Environmental Health Sciences, which supported the project.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>