Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snapshots of laser driven electrons

Physicists of the Laboratory of Attosecond Physics at the Max Planck Institute of Quantum Optics succeeded in the first real-time observation of laser produced electron plasma waves and electron bunches accelerated by them. The physicists describe their results in the scientific journal Nature Physics (March 13th 2011).

Flocking behavior does not only exist among birds, insects or fish; the microcosm offers similar phenomena, too. A team of scientists including Ferenc Krausz and his employees Laszlo Veisz and Alexander Buck of the Laboratory of Attosecond Physics (LAP) at the Max-Planck-Institut für Quantenoptik (MPQ) and the Ludwig-Maximilians-Universität (LMU Munich), in cooperation with colleagues from the Friedrich Schiller University Jena, succeeded in the first observation of laser-accelerated fast electron swarms in conjunction with a plasma wave consisting of positively charged helium ions and slow background electrons.

Artwork depicting laser-driven electron acceleration. An intense light pulse (yellow-orange) produces a plasma wave (white, modulated surface) from oscillating electrons and stationary helium ions. Some electrons leave the plasma wave and fly close to the speed of light as a swarm (red spheres) behind the laser pulse. Graphics: Christian Hackenberger

Helium atoms flowing from a small nozzle are ionized by a laser pulse. Thereby a plasma channel forms from helium ions and free electrons. In this channel the flash of light accelerates a small portion of the electrons almost to the speed of light. Photo: Thorsten Naeser

This way, the physicists managed to observe in real-time how electrons form bunches under the influence of strong laser pulses and how they behave in the slipstream during their flight. The findings facilitate the development of new electron and light sources with which, for example, the structure of atoms and molecules can be explored. In medicine, this knowledge helps the development of new X-ray sources whose resolution will be much higher than current devices allow.

When short laser pulses irradiate e.g. helium atoms their structure is heavily disturbed. If the light is strong enough, electrons are pulled out of the atoms and the helium atoms become ions. This mixture of electrons and ions is called plasma which may support wave structures –the so called electron plasma waves– when exposed to strong light. In laser physics this process and these waves are used under special conditions to rapidly accelerate a small number of the electrons to close to the speed of light and to control them.

A team from the Laboratory of Attosecond Physics at the MPQ and the LMU Munich, in cooperation with the Friedrich Schiller University Jena, succeeded in taking snapshots of both the accelerated electron bunches and the plasma wave produced by the strong laser light that drives them.

In their experiments, the laser physicists focused a laser pulse on a helium gas jet (or flow of helium gas) from a specially designed nozzle. The pulse only lasts a few femtoseconds (one femtosecond corresponds to millionth of a billionth second, 10-15 seconds). The flash of light consists of only a few wave cycles and around one billion billion light particles (photons). Its highest power is focused to a very short moment - the duration of the flash of light - and a tiny area. The high-intensity laser pulse tears out all the electrons from the atoms, leaving behind a plasma composed of free electrons and Helium nuclei. In this cocktail the electrons are much lighter than the helium ions; as a result they are pushed aside. While the laser pulse sweeps across the system the ions remain stationary and the released electrons oscillate around one location. Together the particles form a plasma wave; one oscillation of this structure takes around 20 femtoseconds.

In the plasma wave, gigantic electric fields are formed, which are 1000 times stronger than those generated in the world’s largest particle accelerators. A small number of the electrons take advantage of these fields, fly as a swarm behind the laser pulse in its slipstream and accelerate to close to the speed of light. In this process, every accelerated electron has almost the same energy.

Physicists have long been aware of this phenomenon and it has been demonstrated in earlier experiments. The Japanese laser physicist Toshiki Tajima already described this process in 1970. Today Tajima works as a researcher in the Cluster of excellence "Munich-Centre for Advanced Photonics". However, up to now it has only been possible to individually observe the electron swarm or the whole plasma wave with reduced resolution.

The laser physicists from Garching succeeded in recording both phenomena with a high-resolution image of the plasma wave. The process was documented in snapshots with the same light pulse also responsible for accelerating the electrons. The physicists had previously split the laser pulse so that a small portion of it illuminated the system of free electrons and ions perpendicularly to the electron beam. The periodic structure of the plasma wave refracts and partially deflects the light. ″We observe the deflection and thereby image the plasma wave as a modulation of brightness onto a camera,″ explains Laszlo Veisz, the research-group leader of the LAP team. In doing so the researchers achieve a unique spatial and temporal resolution in the femtosecond range. The electron swarm produces strong magnetic fields that the physicists also record and thus determine its position and duration. Eventually, a film describing the acceleration of the electrons results from the combination of both measurement methods.

″The obtained improved knowledge about laser-driven electron acceleration helps us in the development of new X-ray sources of unprecedented quality, not only for basic research but also for medicine,″ explains Ferenc Krausz.

Original paper:
Alexander Buck, Maria Nicolai, Karl Schmid, Chris M. S. Sears, Alexander Sävert, Julia M. Mikhailova, Ferenc Krausz, Malte C. Kaluza, Laszlo Veisz
Real-time observation of laser-driven electron acceleration
Nature Physics, March 13th 2011, doi : 10.1038/NPHYS1942

Thorsten Naeser | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

More VideoLinks >>>