Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoothing the way for economic flexible OLEDs

14.04.2010
The dream of low-cost, energy-efficient lighting on a big scale becomes tangible thanks to barrier coating systems for flexible OLEDs developed by Fraunhofer researchers

Organic light-emitting diodes (OLEDs) are nowadays synonymous with next generation lighting, which could replace common light-bulbs in a couple of years. They convert electricity very efficiently into light of high quality.

However, existing OLEDs on the market are costly and mostly deposited on rigid materials such as glass. The development of flexible, organic light-emitting diodes, which can be manufactured on an industrial scale, promises economies of scale and accordingly broader marketing of the environmentally sound and highly efficient devices.

Scientists from two renowned Fraunhofer Institutes from Dresden (Germany) assembled flexible, large-area organic light-emitting diodes with barrier layer systems which are necessary for long device lifetimes. The Fraunhofer Institute for Photonic Microsystems IPMS and the Fraunhofer Institute for Electron Beam and Plasma Technology FEP for the first time manufactured a flexible OLED in a roll-to-roll production and encapsulated the device in a subsequent inline-process. This process design would allow the production in a single plant.

The steps were developed in the frame of the project ROLLEX (roll-to-roll production of highly efficient light-emitting diodes on flexible substrates, support codes 13N8858 and 13N8857), funded by the German federal ministry of education and research (BMBF). Professor Karl Leo, director of the Fraunhofer IPMS, confirms: "The successful assembly of an OLED in a roll-to-roll process means a breakthrough on the way to highly efficient and competitive devices. The achievement of this project proves the capacity of Dresden as a focal point for research in organic electronics."

A major component of flexible organic LEDs is the homogenous encapsulation of luminescent layers with transparent barrier layer systems. Permeation of only small amounts of humidity or oxygen shortens the lifetime of the devices drastically, which explains the strong need for barrier systems protecting the luminescent materials on a large area without defects. However, the barrier layers should not absorb the emitted light and should not interfere with the colors of the light.

The researchers of the Fraunhofer Institutes deposited OLED materials on a cheap aluminum foil in a roll-to-roll pilot plant, further encapsulated the luminescent foil with a barrier layer system, patented by the Fraunhofer FEP, without compromising its luminosity. Dr. Christian May, head of the business unit "Organic Materials and Systems" at the Fraunhofer IPMS, is pleased about the promising project: "Developing the flexible OLED, experience from both institutes have been united in an optimal way. I am avid that we integrated the effective barrier layer systems developed from the Fraunhofer FEP into the OLED-technology of the Fraunhofer IPMS." Dr. Nicolas Schiller, head of the business unit "Coating of flexible products" at the Fraunhofer FEP adds: "The coating processes are all done in a roll-to-roll modus with a continuously moved substrate which opens up strong potential to reduce costs."

The technology developed by the two Fraunhofer Institutes marks a milestone on the way towards an industrial manufacturing of flexible OLEDs. Besides OLEDs, also other devices, such as organic solar cells or memory systems, could be realized in intermediate terms.

The work is going to be continued by the Dresden Institutes in a bigger consortium. More information on the achieved results can be found under http://www.rollex-projekt.de and http://www.ipms.fraunhofer.de/en/comedd/ as well as information about the Fraunhofer IPMS and Fraunhofer FEP under http://www.ipms.fraunhofer.de/en/ and http://www.fep.fraunhofer.de/enu/index.asp, respectively.

scientifical-contact:

Dr. Nicolas Schiller, head of business unit Coating flexible products, Fraunhofer Institute for Electron Beam and Plasma Technology FEP Dresden, Phone +49 351/2586-131, nicolas.schiller@fep.fraunhofer.de

press-contact:

Ines Schedwill, Fraunhofer Institute for Photonic Microsystems IPMS Dresden, Phone +49 351/8823-238, ines.schedwill@ipms.fraunhofer.de

Annett Arnold, Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP Dresden, Phone +49 351/2586-452, annett.arnold@fep.fraunhofer.de

Annett Arnold | idw
Further information:
http://www.ipms.fraunhofer.de
http://www.ipms.fraunhofer.de/en/ and http://www.fep.fraunhofer.de/enu/index.asp

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>