Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoothing the way for economic flexible OLEDs

14.04.2010
The dream of low-cost, energy-efficient lighting on a big scale becomes tangible thanks to barrier coating systems for flexible OLEDs developed by Fraunhofer researchers

Organic light-emitting diodes (OLEDs) are nowadays synonymous with next generation lighting, which could replace common light-bulbs in a couple of years. They convert electricity very efficiently into light of high quality.

However, existing OLEDs on the market are costly and mostly deposited on rigid materials such as glass. The development of flexible, organic light-emitting diodes, which can be manufactured on an industrial scale, promises economies of scale and accordingly broader marketing of the environmentally sound and highly efficient devices.

Scientists from two renowned Fraunhofer Institutes from Dresden (Germany) assembled flexible, large-area organic light-emitting diodes with barrier layer systems which are necessary for long device lifetimes. The Fraunhofer Institute for Photonic Microsystems IPMS and the Fraunhofer Institute for Electron Beam and Plasma Technology FEP for the first time manufactured a flexible OLED in a roll-to-roll production and encapsulated the device in a subsequent inline-process. This process design would allow the production in a single plant.

The steps were developed in the frame of the project ROLLEX (roll-to-roll production of highly efficient light-emitting diodes on flexible substrates, support codes 13N8858 and 13N8857), funded by the German federal ministry of education and research (BMBF). Professor Karl Leo, director of the Fraunhofer IPMS, confirms: "The successful assembly of an OLED in a roll-to-roll process means a breakthrough on the way to highly efficient and competitive devices. The achievement of this project proves the capacity of Dresden as a focal point for research in organic electronics."

A major component of flexible organic LEDs is the homogenous encapsulation of luminescent layers with transparent barrier layer systems. Permeation of only small amounts of humidity or oxygen shortens the lifetime of the devices drastically, which explains the strong need for barrier systems protecting the luminescent materials on a large area without defects. However, the barrier layers should not absorb the emitted light and should not interfere with the colors of the light.

The researchers of the Fraunhofer Institutes deposited OLED materials on a cheap aluminum foil in a roll-to-roll pilot plant, further encapsulated the luminescent foil with a barrier layer system, patented by the Fraunhofer FEP, without compromising its luminosity. Dr. Christian May, head of the business unit "Organic Materials and Systems" at the Fraunhofer IPMS, is pleased about the promising project: "Developing the flexible OLED, experience from both institutes have been united in an optimal way. I am avid that we integrated the effective barrier layer systems developed from the Fraunhofer FEP into the OLED-technology of the Fraunhofer IPMS." Dr. Nicolas Schiller, head of the business unit "Coating of flexible products" at the Fraunhofer FEP adds: "The coating processes are all done in a roll-to-roll modus with a continuously moved substrate which opens up strong potential to reduce costs."

The technology developed by the two Fraunhofer Institutes marks a milestone on the way towards an industrial manufacturing of flexible OLEDs. Besides OLEDs, also other devices, such as organic solar cells or memory systems, could be realized in intermediate terms.

The work is going to be continued by the Dresden Institutes in a bigger consortium. More information on the achieved results can be found under http://www.rollex-projekt.de and http://www.ipms.fraunhofer.de/en/comedd/ as well as information about the Fraunhofer IPMS and Fraunhofer FEP under http://www.ipms.fraunhofer.de/en/ and http://www.fep.fraunhofer.de/enu/index.asp, respectively.

scientifical-contact:

Dr. Nicolas Schiller, head of business unit Coating flexible products, Fraunhofer Institute for Electron Beam and Plasma Technology FEP Dresden, Phone +49 351/2586-131, nicolas.schiller@fep.fraunhofer.de

press-contact:

Ines Schedwill, Fraunhofer Institute for Photonic Microsystems IPMS Dresden, Phone +49 351/8823-238, ines.schedwill@ipms.fraunhofer.de

Annett Arnold, Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP Dresden, Phone +49 351/2586-452, annett.arnold@fep.fraunhofer.de

Annett Arnold | idw
Further information:
http://www.ipms.fraunhofer.de
http://www.ipms.fraunhofer.de/en/ and http://www.fep.fraunhofer.de/enu/index.asp

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>