Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smooth propagation of spin waves using gold

26.06.2017

The generation mechanism of spin wave noise and the suppression method

Assistant Professor Taichi Goto at Toyohashi University of Technology elucidated the noise generation mechanism of the spin wave (SW), the wave of a magnetic moment transmitted through magnetic oxide, and established a way to suppress it. The large noise generated by SWs traveling through magnetic oxides has presented a significant obstacle to its applications. However, it became clear that noise can be suppressed by installing a thin gold film in the appropriate places. This method is expected to be applied to SW devices such as multi-input and multi-output phase interference devices for SWs. The research results were reported in Journal of Physics D: Applied Physics on June 15, 2017.


This is a magnetic oxide film treated with gold film capable of suppressing SW noise.

COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Recent electronic devices using semiconductor materials are having difficulty meeting the demand of a rapidly growing information society due to issues such as a high chip temperature due to high integration. Development of an SW logic circuit that can process information, and significantly suppress heat generation through transmitting only SWs without transferring electrons themselves, has been attracting attention. SWs that propagate through magnetic oxides have the advantage of low energy loss and a long transmission distance. On the other hand, as the loss is so small, SW reflected at the end of the material or interface with the electrode disturb the target spin wave. This phenomenon is called SW noise, which has made SW unsuitable for application in the past.

The Spin Electronics Group of Toyohashi University of Technology discovered that forming a gold film with sufficient length at the end of an yttrium iron garnet (YIG), which is a well-known magnetic oxide material, suppresses the generation of unnecessary SWs. In addition, the group found for the first time that SW noise is also sensitive to the position of the gold film.

... more about:
»electrode »electrodes »split »waves »yttrium

"There are series of new devices using SWs and findings of new phenomena, yet there hasn't been much research on finding out how to transmit SWs through magnetic oxide or elucidating the cause of the generation of disturbing SWs.", said Assistant Professor Goto.

The first author master course student Shimada who ran the simulation said, "We analyzed the fundamental propagation characteristics of the structure using gold film. Since this method can significantly suppress the noise, it will contribute to the development of SW devices that use magnetic oxide. Furthermore, SW logic circuits that use phase information can be realized as the phases of waves are stabilized." SW propagation characteristics were calculated and analyzed based on the finite element analysis method, by computer generating a three-dimensional model that has the same size as the sample used in the actual experiment. A model with a pair of electrodes for exciting SWs and a gold film for removing noise placed on the magnetic oxide was used to find out how gold film affects SW propagation by comprehensively changing the length of magnetic oxide materials, the position of the gold film, and the distance from the electrode. The result showed that when the distance between the gold film and the electrodes is long, a standing wave of SWs is generated, causing strong noise. The group learned that the noise can be suppressed by positioning the gold film close enough to the electrodes. This helps smoothen the propagation characteristics, and realizes a stable element design that can keep the influence of some frequency variations and disturbances to the entire device, to the propagation characteristics, small.

This simulation is a known method with high reproducibility. Therefore, the method is expected to be applied to SW devices such as multi-input/multi-output phase interference devices for SW in the future.

###

Funding agency:

This work supported by Grants-in-Aid for PRESTO Program (JPMJPR1524) from JST, KAKENHI (Nos. 26706009?26220902?25820124) from JSPS, and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2802) from JSPS.

Reference:

Kei Shimada, Taichi Goto, Naoki Kanazawa, Hiroyuki Takagi, Yuichi Nakamura, Hironaga Uchida and Mitsuteru Inoue, "Extremely flat transmission band of forward volume spin wave using gold and yttrium iron garnet", 2017 J. Phys. D: Appl. Phys. 50 275001. https://doi.org/10.1088/1361-6463/aa7505

Media Contact

Yuko Ito
press@office.tut.ac.jp

Toyohashi University of Technology - Google-Suche

https://www.tut.ac.jp/english/

Yuko Ito | EurekAlert!

Further reports about: electrode electrodes split waves yttrium

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>