Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The smallest possible switches

The smallest mechanical switch plus an electronic switch of a type never seen before. That’s how physicist Marius Trouwborst sums up the results of his PhD research on electric current through atoms and molecules. ‘The ultimate aim of nanotechnology is to use molecules for electronics’, he says. ‘That aim has now come a step closer.’

The enormous progress in information technology is mainly related to the fact that the electronic parts in computers are getting smaller and smaller. And smaller automatically means quicker and cheaper. In the past forty years, the number of transistors in a computer chip has doubled every two years. However, in ten years from now we will reach a physical limit, estimates Trouwborst. At this limit, the basic principles of the transistor do not longer work properly.

Fundamental research

If we want to continue with making faster computers, new methods have to be discovered. One possibility is to use atoms and molecules. Trouwborst’s fundamental research on electron transport through individual atoms and molecules fits into this hunt.


During the research, Trouwborst developed a new method to organize gold atoms in such a way that a very tiny mechanical switch could be made with them: only a single gold atom forms the contact. In addition, Trouwborst constructed a new type of electronic switch of the same miniscule size.

Chewing gum

The method works with a so-called break junction. First, a gold wire is fixed onto a strip of flexible plastic. By now carefully bending the strip, the gold wire slowly stretches out, just like chewing gum. Just before it breaks, the wire has a diameter of only one gold atom. Extremely careful further bending (at the nanoscale) moves the ends a tiny distance away from each other. Although the wires are now separated, the fracture is is not definitive. As soon as it is very, very carefully bent back into position the ends fuse together again.

Contact of a single atom

Trouwborst repeated this bending back and forth for many times, in a very controlled way. Every time the wire breaks, the atoms in the two ends get organized in a different way. Trouwborst discovered that this reorganization gradually becomes more regular. Finally, the points look like carefully stacked pyramids of billiard balls with a single atom at the apex. ‘By moving the two ends back and forth by a distance of 0.1 nanometre, the switch can be turned on and off’, says Trouwborst.

Captured molecule

Moreover, the system can also be used to ‘catch’ a molecule between the ends. That is useful for studying the electronic characteristics of that molecule. When an electrical voltage is set over the ends, all the electron transport goes through that single molecule in the middle.

Trouwborst used hydrogen molecules for his research. When increasing the voltage, the hydrogen molecule starts to vibrate between the ends of the gold threads. Trouwborst discovered that the resistance then suddenly changes, it jumps down. ‘You can simply turn the system on or off by making the molecules vibrate or not’, says Trouwborst. ‘This type of switch has never been shown before.’

Unknown cause

Although related to the vibrating molecules, the exact cause of this switching behaviour is still unknown. Trouwborst suspects that is has something to do with a phase transition. More research is needed before the switches can actually be used. However, ‘what is clear’, says Trouwborst, ‘is that it provides new insight on the road to using molecules as functional building elements in the electronics of the future.’

Jos Speekman | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>