Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smaller Lidars Could Allow UAVs to Conduct Underwater Scans


Bathymetric lidars – devices that employ powerful lasers to scan beneath the water's surface – are used today primarily to map coastal waters. At nearly 600 pounds, the systems are large and heavy, and they require costly, piloted aircraft to carry them.

A team at the Georgia Tech Research Institute (GTRI) has designed a new approach that could lead to bathymetric lidars that are much smaller and more efficient than the current full-size systems. The new technology, developed under the Active Electro-Optical Intelligence, Surveillance and Reconnaissance (AEO-ISR) project, would let modest-sized unmanned aerial vehicles (UAVs) carry bathymetric lidars, lowering costs substantially.

Georgia Tech Photo: Rob Felt

The GTRI lightweight lidar prototype system uses a special green laser that penetrates water to considerable depths. GTRI researchers use it to study the best methods for producing accurate images of objects on the pool floor.

And, unlike currently available systems, AEO-ISR technology is designed to gather and transmit data in real time, allowing it to produce high-resolution 3-D undersea imagery with greater speed, accuracy, and usability.

These advanced capabilities could support a range of military uses such as anti-mine and anti-submarine intelligence and nautical charting, as well as civilian mapping tasks. In addition, GTRI’s new lidar could probe forested areas to detect objects under thick canopies.

"Lidar has completely revolutionized the way that ISR is done in the military – and also the way that precision mapping is done in the commercial world," said Grady Tuell, a principal research scientist who is leading the work. "GTRI has extensive experience in atmospheric lidar going back 30 years, and we're now bringing that knowledge to bear on a growing need for small, real-time bathymetric lidar systems."

Tuell and his team have developed a new GTRI lightweight lidar, a prototype that has successfully demonstrated AEO-ISR techniques in the laboratory. The team has also completed a design for a deployable mid-size bathymetric device that is less than half the size and weight of current systems and needs half the electric power.

Measuring Laser Light

To simulate the movement of an actual aircraft, the prototype must be "flown" over a laboratory pool. To do this, the researchers install the lidar onto a gantry above a large water tank in Georgia Tech’s Woodruff School of Mechanical Engineering and then operate it in a manner that simulates flight.

The lidar utilizes a high-power green laser that can penetrate water to considerable depths. Firing a laser beam every 10,000th of a second, the proxy aircraft allows the team to study the best methods for producing accurate images of objects on the floor of the pool.

The ultimate goal is to obtain accurate reflectance from the sea floor, but the presence of water makes that difficult. To capture good images, the GTRI lightweight lidar must make a series of adjustments that let it measure reflected laser beams as if there were no water present.

One challenge is that when a tightly focused light beam such as a laser hits water, it loses speed and bends, a familiar underwater effect called refraction. Due to changes in the water's surface, the angle of refraction varies constantly, and these changes in the refracted angle must be accounted for when computing the path of the light.

Another challenge is that the photons in the laser beam scatter in the water, like light from a car headlight hitting fog. The amount of this scattering depends on the water’s turbidity, which refers to the number of particles suspended in it. In addition, the water absorbs some of the light.

Because of these two effects, a lidar system receives back only a tiny signal when its laser beam bounces off an underwater surface such as the sea floor. The signal-conditioning and sensor-processing capabilities of the lightweight lidar must be sophisticated enough to detect that small returning signal in an overall sea and air environment that is very noisy – meaning that it's filled with extraneous signals that interfere with the desired data.

Improving Critical Techniques

The ultimate product of a bathymetric lidar is a three-dimensional point cloud that describes the seafloor at high spatial resolution. Users of these data need to know the accuracy of each point.

GTRI’s researchers have devised a new approach for accuracy assessment called total propagated uncertainty (TPU). Using statistics, calculus, and linear algebra, the TPU technique propagates errors from the individual measurements – navigation, distance, and refraction angle – to estimate the accuracy of sea-floor measurements.

In a major milestone, the GTRI team was the first to demonstrate bathymetric lidar coordinate computation and TPU estimates in real time. To achieve the necessary processing speed, the team employs a mixed-mode computing environment composed of field programmable gate arrays (FPGAs), along with central-processing and graphics-processing units.

Each time a laser is fired, Tuell explained, it takes only a few nanoseconds for the beam to reach the bottom of the pool and bounce back. Once the beam returns, the lidar's high-speed computer digitizes the returned beam and computes ranges, coordinates, and TPU before the next shot of the laser.

"In our laboratory tests, we're computing about 37 million points per second – which is exceptionally fast for a lidar system and gives us a great deal of information about the sea floor in a very short period of time," Tuell said. "The key is we're using FPGAs to do the necessary signal conditioning and signal processing, and we're doing it at exactly the time that we convert from an analog signal to a digital signal."

A Deployable Design

In addition to developing the proof-of-concept lidar prototype, the GTRI team has produced a CAD design for a deployable bathymetric device that is half the size and weight of current devices and has lower power needs. The immediate goal is to field such a mid-size device on a larger UAV such as an autonomous helicopter.

The longer-term aim is to use AEO-ISR technology to develop bathymetric lidars that could fly on small UAVs with payloads of 30 pounds or less. To help these lidars deliver maritime surveillance and mapping data in real time, most of the necessary signal processing would be done on the aircraft and only essential data would be transmitted to ground stations.

"We've provided a prototype that demonstrates the key technology, and we've completed a design for a mid-size design," Tuell said. "In the future, we believe small bathymetric lidars will perform military tasks, and also civilian tasks such as county-level mapping, with increased convenience and at greatly reduced cost."

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA

Media Relations Contacts: Lance Wallace (404-407-7280) ( or John Toon (404-894-6986) (

Writer: Rick Robinson

Contact Information
John Toon
Director, Research News
Phone: 404-894-6986

Rick Robinson | newswise

Further reports about: GTRI GTRI’s Technology accuracy accurate laser beam measurements sea floor signal processing underwater

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>