Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller Lidars Could Allow UAVs to Conduct Underwater Scans

05.12.2014

Bathymetric lidars – devices that employ powerful lasers to scan beneath the water's surface – are used today primarily to map coastal waters. At nearly 600 pounds, the systems are large and heavy, and they require costly, piloted aircraft to carry them.

A team at the Georgia Tech Research Institute (GTRI) has designed a new approach that could lead to bathymetric lidars that are much smaller and more efficient than the current full-size systems. The new technology, developed under the Active Electro-Optical Intelligence, Surveillance and Reconnaissance (AEO-ISR) project, would let modest-sized unmanned aerial vehicles (UAVs) carry bathymetric lidars, lowering costs substantially.


Georgia Tech Photo: Rob Felt

The GTRI lightweight lidar prototype system uses a special green laser that penetrates water to considerable depths. GTRI researchers use it to study the best methods for producing accurate images of objects on the pool floor.

And, unlike currently available systems, AEO-ISR technology is designed to gather and transmit data in real time, allowing it to produce high-resolution 3-D undersea imagery with greater speed, accuracy, and usability.

These advanced capabilities could support a range of military uses such as anti-mine and anti-submarine intelligence and nautical charting, as well as civilian mapping tasks. In addition, GTRI’s new lidar could probe forested areas to detect objects under thick canopies.

"Lidar has completely revolutionized the way that ISR is done in the military – and also the way that precision mapping is done in the commercial world," said Grady Tuell, a principal research scientist who is leading the work. "GTRI has extensive experience in atmospheric lidar going back 30 years, and we're now bringing that knowledge to bear on a growing need for small, real-time bathymetric lidar systems."

Tuell and his team have developed a new GTRI lightweight lidar, a prototype that has successfully demonstrated AEO-ISR techniques in the laboratory. The team has also completed a design for a deployable mid-size bathymetric device that is less than half the size and weight of current systems and needs half the electric power.

Measuring Laser Light

To simulate the movement of an actual aircraft, the prototype must be "flown" over a laboratory pool. To do this, the researchers install the lidar onto a gantry above a large water tank in Georgia Tech’s Woodruff School of Mechanical Engineering and then operate it in a manner that simulates flight.

The lidar utilizes a high-power green laser that can penetrate water to considerable depths. Firing a laser beam every 10,000th of a second, the proxy aircraft allows the team to study the best methods for producing accurate images of objects on the floor of the pool.

The ultimate goal is to obtain accurate reflectance from the sea floor, but the presence of water makes that difficult. To capture good images, the GTRI lightweight lidar must make a series of adjustments that let it measure reflected laser beams as if there were no water present.

One challenge is that when a tightly focused light beam such as a laser hits water, it loses speed and bends, a familiar underwater effect called refraction. Due to changes in the water's surface, the angle of refraction varies constantly, and these changes in the refracted angle must be accounted for when computing the path of the light.

Another challenge is that the photons in the laser beam scatter in the water, like light from a car headlight hitting fog. The amount of this scattering depends on the water’s turbidity, which refers to the number of particles suspended in it. In addition, the water absorbs some of the light.

Because of these two effects, a lidar system receives back only a tiny signal when its laser beam bounces off an underwater surface such as the sea floor. The signal-conditioning and sensor-processing capabilities of the lightweight lidar must be sophisticated enough to detect that small returning signal in an overall sea and air environment that is very noisy – meaning that it's filled with extraneous signals that interfere with the desired data.

Improving Critical Techniques

The ultimate product of a bathymetric lidar is a three-dimensional point cloud that describes the seafloor at high spatial resolution. Users of these data need to know the accuracy of each point.

GTRI’s researchers have devised a new approach for accuracy assessment called total propagated uncertainty (TPU). Using statistics, calculus, and linear algebra, the TPU technique propagates errors from the individual measurements – navigation, distance, and refraction angle – to estimate the accuracy of sea-floor measurements.

In a major milestone, the GTRI team was the first to demonstrate bathymetric lidar coordinate computation and TPU estimates in real time. To achieve the necessary processing speed, the team employs a mixed-mode computing environment composed of field programmable gate arrays (FPGAs), along with central-processing and graphics-processing units.

Each time a laser is fired, Tuell explained, it takes only a few nanoseconds for the beam to reach the bottom of the pool and bounce back. Once the beam returns, the lidar's high-speed computer digitizes the returned beam and computes ranges, coordinates, and TPU before the next shot of the laser.

"In our laboratory tests, we're computing about 37 million points per second – which is exceptionally fast for a lidar system and gives us a great deal of information about the sea floor in a very short period of time," Tuell said. "The key is we're using FPGAs to do the necessary signal conditioning and signal processing, and we're doing it at exactly the time that we convert from an analog signal to a digital signal."

A Deployable Design

In addition to developing the proof-of-concept lidar prototype, the GTRI team has produced a CAD design for a deployable bathymetric device that is half the size and weight of current devices and has lower power needs. The immediate goal is to field such a mid-size device on a larger UAV such as an autonomous helicopter.

The longer-term aim is to use AEO-ISR technology to develop bathymetric lidars that could fly on small UAVs with payloads of 30 pounds or less. To help these lidars deliver maritime surveillance and mapping data in real time, most of the necessary signal processing would be done on the aircraft and only essential data would be transmitted to ground stations.

"We've provided a prototype that demonstrates the key technology, and we've completed a design for a mid-size design," Tuell said. "In the future, we believe small bathymetric lidars will perform military tasks, and also civilian tasks such as county-level mapping, with increased convenience and at greatly reduced cost."

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA

Media Relations Contacts: Lance Wallace (404-407-7280) (lance.wallace@gtri.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu).

Writer: Rick Robinson

Contact Information
John Toon
Director, Research News
jtoon@gatech.edu
Phone: 404-894-6986

Rick Robinson | newswise

Further reports about: GTRI GTRI’s Technology accuracy accurate laser beam measurements sea floor signal processing underwater

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>