Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller and cheaper but 300 times more intense

12.10.2010
More brilliant X-rays, more cost-effective methods for developing new energy sources and advanced manufacturing processes are just some of the benefits which may come from a novel technology, proven at the theoretical level by a consortium of British and European laser scientists. The research, led by scientists at the Science and Technology Facilities Council’s Central Laser Facility is published in this week’s edition of Nature Physics (October 10 2010).

A team of scientists from the Instituto Superior Tecnico in Lisbon, Imperial College London, and the Universities of St Andrews, Lancaster and Strathclyde as well as STFC's Central Laser Facility staff have demonstrated the feasibility of a groundbreaking method called Raman amplification which can take long laser pulses and compress them to 1000 times shorter, but with intensities 300 times greater.

This means that current very expensive and complex laser set-ups could eventually be replaced with smaller and more cost effective systems. This would make many technologies, including methods used to develop x-rays which rely on lasers, far more accessible and easier to mass-produce. This latest development is another step in laser scientists quest to develop ever more powerful lasers, increasingly demanded by new technologies since the invention of the laser 50 years ago.

The technique has been examined over a two year period, using some of the world's most powerful supercomputers, to test every possible aspect of the theory. "In the past, studies have been carried out to test the theory, but only using simplified models which do not include all of the relevant phenomena. Our new model has shown that, in most cases, the amplified laser beam breaks up into 'spikes', making it difficult to focus the beam to a small spot" said Dr Raoul Trines from STFC's Central Laser Facility. "But for a few special cases, the amplified laser pulse is of excellent quality, enabling exceptionally tight focusing of the beam".

Professor John Collier, Director, STFC's Central Laser Facility said; "This year's celebration of 50 years of the laser* is a poignant reminder that we need to start thinking about the next generation of laser technology. We have come to rely on lasers so much in our daily lives, for everything from high speed internet connections to medical techniques, that we can't afford to pause even for a moment in developing laser techniques further, because these new techniques take years to develop and test".

The next step is to apply the theoretical study on an actual high power laser and fine tune the method through rigorous experimental testing.

The study has been funded by the Accelerator Science and Technology Centre (ASTeC) with cross-departmental involvement within STFC, including collaboration with STFC's e-science department through the use of the CLF's SCARF LEXICON supercomputer and the Instituto Tecnico in Lisbon, Imperial College London and the Universities of St Andrews, Lancaster and Strathcylde. It has also been made possible through a grant from one of STFC's sister councils, Engineering and Physical Sciences Research Council (EPSRC).

Jill Little | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>