Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Particle Means Big Research for International Physics Project

21.02.2011
As part of a global physics project, a team of Kansas State University physics researchers is starting small.

They're looking at neutrinos, tiny particles with a major influence on physics research.

Glenn Horton-Smith, associate professor of physics, is leading the K-State exploration on the Double Chooz neutrino detector, located in the Ardennes region of northern France. The detector measures neutrinos from the nearby Chooz nuclear power plant.

More than 38 universities and research institutes from eight countries are working on the neutrino detector. K-State is one of 14 U.S. organizations involved.

Neutrinos are neutral elementary particles that come from nuclear reactions or radioactive decay, and large detectors are needed to capture and measure them.

The detector is buried more than 300 feet inside a hill a little more than a half of a mile away from the nuclear reactor and is the site of a previous neutrino experiment. Construction on the first of two new neutrino detectors finished in late 2010.

"It's exciting because we're in a data-taking stage right now," Horton-Smith said. "We're looking at the first data that is coming out and making sure everything is working correctly."

K-State scientists, along with K-State's Electronics Design Lab, designed and built the hardware for the detector's monitoring system, which measures the magnetic field and temperature throughout the detector. Horton-Smith wrote the first computer simulation of the detector, and he leads the group of researchers who work on offline data processing and simulation software.

The hardware and software help the detector measure neutrino oscillations, which are the transformations of neutrinos into different types. Neutrinos come in three different types, each an overlapping of three different mass states. As these states oscillate, a neutrino's type changes.

"It is very analogous to a musical chord, where you hear two or three frequencies at the same time," Horton-Smith said.

While two mass states have been detected in the neutrinos from reactors, the third state is either weak or absent. Researchers in the Double Chooz collaboration want to discover more about this third mass state.

To capture and measure neutrinos, the detector includes a central cylinder 10.5 cubic meters in size that is surrounded by larger cylinders. The cylinders are filled with a clear liquid scintillating oil that glows when neutrinos interact and measures energy deposited by radiation and subatomic particles. Several layers of buffer liquid and steel act as protection.

"We're really checking to see whether all three mass states are in the electron neutrino, or if one of them is missing," Horton-Smith said. "If one of them is missing, there are all sorts of theories about why that may be."

Researchers will collect data throughout the year from the first detector. The second detector, scheduled to be completed in 2012, will be even closer to the nuclear reactor -- more than 1,300 feet. By comparing data from both detectors at two different distances, researchers hope to have more accurate measurements of neutrino oscillations.

Other K-State researchers involved with the project include David McKee, postdoctoral researcher; Pi-Jung Chang, doctoral student in physics, Sinjhuang, Taiwan; and Deepak Shrestha, doctoral student in physics, Palpa, Nepal.

Photos available. Download at http://neutrino.phys.ksu.edu/~gahs/doublechooz/photos/

Note to editor: Please attribute photos to credit listed in cutline.

Source: Glenn Horton-Smith, 785-532-6476, gahs@k-state.edu

Glenn Horton-Smith | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>