Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Particle Means Big Research for International Physics Project

21.02.2011
As part of a global physics project, a team of Kansas State University physics researchers is starting small.

They're looking at neutrinos, tiny particles with a major influence on physics research.

Glenn Horton-Smith, associate professor of physics, is leading the K-State exploration on the Double Chooz neutrino detector, located in the Ardennes region of northern France. The detector measures neutrinos from the nearby Chooz nuclear power plant.

More than 38 universities and research institutes from eight countries are working on the neutrino detector. K-State is one of 14 U.S. organizations involved.

Neutrinos are neutral elementary particles that come from nuclear reactions or radioactive decay, and large detectors are needed to capture and measure them.

The detector is buried more than 300 feet inside a hill a little more than a half of a mile away from the nuclear reactor and is the site of a previous neutrino experiment. Construction on the first of two new neutrino detectors finished in late 2010.

"It's exciting because we're in a data-taking stage right now," Horton-Smith said. "We're looking at the first data that is coming out and making sure everything is working correctly."

K-State scientists, along with K-State's Electronics Design Lab, designed and built the hardware for the detector's monitoring system, which measures the magnetic field and temperature throughout the detector. Horton-Smith wrote the first computer simulation of the detector, and he leads the group of researchers who work on offline data processing and simulation software.

The hardware and software help the detector measure neutrino oscillations, which are the transformations of neutrinos into different types. Neutrinos come in three different types, each an overlapping of three different mass states. As these states oscillate, a neutrino's type changes.

"It is very analogous to a musical chord, where you hear two or three frequencies at the same time," Horton-Smith said.

While two mass states have been detected in the neutrinos from reactors, the third state is either weak or absent. Researchers in the Double Chooz collaboration want to discover more about this third mass state.

To capture and measure neutrinos, the detector includes a central cylinder 10.5 cubic meters in size that is surrounded by larger cylinders. The cylinders are filled with a clear liquid scintillating oil that glows when neutrinos interact and measures energy deposited by radiation and subatomic particles. Several layers of buffer liquid and steel act as protection.

"We're really checking to see whether all three mass states are in the electron neutrino, or if one of them is missing," Horton-Smith said. "If one of them is missing, there are all sorts of theories about why that may be."

Researchers will collect data throughout the year from the first detector. The second detector, scheduled to be completed in 2012, will be even closer to the nuclear reactor -- more than 1,300 feet. By comparing data from both detectors at two different distances, researchers hope to have more accurate measurements of neutrino oscillations.

Other K-State researchers involved with the project include David McKee, postdoctoral researcher; Pi-Jung Chang, doctoral student in physics, Sinjhuang, Taiwan; and Deepak Shrestha, doctoral student in physics, Palpa, Nepal.

Photos available. Download at http://neutrino.phys.ksu.edu/~gahs/doublechooz/photos/

Note to editor: Please attribute photos to credit listed in cutline.

Source: Glenn Horton-Smith, 785-532-6476, gahs@k-state.edu

Glenn Horton-Smith | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>