Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Small Measure: Origins of Nanorod Diameter Discovered

23.03.2009
A new study answers a key question at the very heart of nanotechnology: Why are nanorods so small?

Researchers at Rensselaer Polytechnic Institute have discovered the origins of nanorod diameter, demonstrating that the competition and collaboration among various mechanisms of atomic transport hold the key to nanorod size.

The researchers say it is the first study to identify the fundamental reasons why nearly all nanorods have a diameter on the order of 100 nanometers.

“Scientists have been fabricating nanorods for decades, but no one has ever answered the question, ‘Why is that possible?’” said Hanchen Huang, professor in Rensselaer’s Department of Mechanical, Aerospace, and Nuclear Engineering, who led the study. “We have used computer modeling to identify, for the first time, the fundamental reasons behind nanorod diameter. With this new understanding, we should be able to better control nanorods, and therefore design better devices.”

Results of the study, titled “A characteristic length scale of nanorods diameter during growth,” were recently published in the journal Physical Review Letters.

When fabricating nanorods, atoms are released at an oblique angle onto a surface, and the atoms accumulate and grow into nanorods about 100 nanometers in diameter. A nanometer is one billionth of a meter in length.

The accumulating atoms form small layers. After being deposited onto a layer, it takes varying amounts of energy for atoms to travel or “step” downward to a lower layer, depending on the step height. In a previous study, Huang and colleagues calculated and identified these precise energy requirements. As a result, the researchers discovered the fundamental reason nanorods grow tall: as atoms are unable to step down to the next lowest layer, they begin to stack up and grow higher.

It is the cooperation and competition of atoms in this process of multi-layer diffusion that accounts for the fundamental diameter of nanorods, Huang shows in the new study. The rate at which atoms are being deposited onto the surface, as well as the temperature of the surface, also factor into the equation.

“Surface steps are effective in slowing down the mass transport of surface atoms, and aggregated surface steps are even more effective,” Huang said. “This extra effectiveness makes the diameter of nanorods around 100 nanometers; without it the diameter would go up to 10 microns.”

Beyond advancing scientific theory, Huang said the discovery could have implications for developing photonic materials and fuel cell catalysts.

Huang co-authored the paper with Rensselaer Research Scientist Longguang Zhou.

Funding for this research was provided by the U.S. Department of Energy Office of Basic Energy Science.

Visit Huang’s Web site for more information on his nanotechnology and materials research.

Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>