Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow motion: antiprotons unravel atoms

10.11.2008
Theories on atomic reactions are being tested in collision experiments using a very slow beam of antiprotons

Quantum mechanics makes it easy to describe hydrogen, the simplest atom, but bigger atoms are more complicated owing to interactions between their electrons. It is especially difficult to predict the dynamics of atomic reactions during a collision. Now a team including RIKEN researchers has shed more light on this problem by performing collision experiments with slow beams of particles called antiprotons (1).

The researchers, based at the CERN particle accelerator complex in Switzerland, bombarded helium atoms with antiprotons. There is particular demand to do this with very slow antiproton beams, because current theories may not be accurate for low-energy collisions.

“Ionization by an antiproton, a unique heavy negative particle, is in itself quite exotic,” explains RIKEN scientist Yasunori Yamazaki. “In addition to this, helium is one of the most important targets to study collision dynamics because it has two electrons with a strong correlation between them.”

At CERN, antiprotons are produced in a nuclear reaction which gives them very high energies measured in billions of electron volts. They are then collected in an AD (antiproton decelerator), cooled and decelerated, so that their energies are reduced to a few million electron volts.

Yamazaki and co-workers constructed a new ‘radio frequency quadrupole decelerator’ and a ‘multi-ring trap’ to reduce the antiproton energy further down to a fraction of an electron volt, before re-accelerating them to 3,000–25,000 electron volts. This corresponds to speeds around 6,000 meters per second—very slow in particle accelerator terms.

The researchers directed their beam of slow antiprotons onto a jet of helium and argon, and monitored the energies of ions created. Their results show that the new theoretical models of low energy reactions are working, as Yamazaki explains.

“The previous experimental data did not agree with any reasonable theories, so there were big discussions on whether we forgot to include some important effects,” he says. “The good news is that it looks like our understanding on the collision dynamics of a slow antiproton and helium atom is now within satisfactory levels.”

Yamazaki and co-workers plan to develop more sophisticated equipment in order to achieve even lower antiproton energies, and observe not only the ions created during collisions, but also the electrons ‘knocked off’ the atoms. At lower energies the antiproton may get trapped in an orbit of the target atom, creating an interesting ‘molecule’ called an antiprotonic atom. The data could even help scientists investigating the use of antiprotons in treating cancer.

Reference

1. Knudsen, H., Kristiansen, H.-P.E., Thomsen, H.D., Uggerhøj, U.I., Ichioka, T., Møller, S.P., Hunniford, C.A., McCullough, R.W., Charlton, M., Kuroda, Y., et al. Ionization of helium and argon by very slow antiproton impact. Physical Review Letters 101, 043201 (2008).

The corresponding author for this highlight is based at the RIKEN Atomic Physics Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/578/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>