Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow Flow: New Wind Tunnel is Largest of Its Type

18.11.2010
Facility Will Model More Efficient Aircraft, Better Weather Prediction

The University of New Hampshire is now home to a wind tunnel that is the largest of its type in the world.

At 300 feet long, the new Flow Physics Facility (FPF) is the world’s largest scientific quality boundary-layer wind tunnel facility. It will help engineers and scientists better understand the dynamics of turbulent boundary layers, informing the aerodynamics of situations such as atmospheric wind over the ocean, the flow of air over a commercial airplane or of sea water over a submarine.

Two 400-horsepower fans, each moving 250,000 cubic feet of air per minute, can generate a wind of approximately 28 miles per hour in the facility. The relatively low velocity of wind generated over a great distance makes for greater accuracy in measuring the turbulence that develops in a specific class of flows known as high Reynolds number flows.

“The philosophy behind this facility is the big and slow approach,” says Joe Klewicki, professor of mechanical engineering and director of the Center for Fluid Physics, as well as outgoing dean of the College of Engineering and Physical Sciences.

“Turbulence is often called the last unsolved problem in classical physics, and our lack of understanding has many adverse effects, from weather prediction to engineering design and practice,” says assistant professor of mechanical engineering Martin Wosnik, who helped design the facility with Klewicki and assistant professor of mechanical engineering Chris White. “This new facility will help us test, for the first time, new theories that are emerging to update the classical views of turbulence, which date from the 1930s and ‘40s.”

Researchers from UNH and beyond will use the facility to explore the aerodynamics of, for instance, the junction of the wing and fuselage on an airplane. “This is a huge issue for aircraft companies, because it enables them to better predict or even manipulate fuel economy,” says Klewicki. Or by placing a model cityscape on a turntable in the wind tunnel, engineers could model how the release of a chemical into the atmosphere would flow around buildings.

The wind tunnel is also ideally suited for human-scale aerodynamic studies, says Klewicki. By positioning athletes like skiers or bicyclists in the tunnel, scientists and coaches could improve helmet design, posture, or pedaling position for maximum efficiency. For elite competitors, “the smallest change in where your knee is when you pedal, for instance, can mean the difference between finishing first or fifth,” says Klewicki.

The FPF, which is on Waterworks Road on the eastern edge of campus, is essentially a rectangular box, 300 feet long by 20 feet wide. The fans create suction that pulls air through open garage-style doors on the opposite end of the facility: “Unless both garage doors are open, the fans won’t run. Without such precautions one could cause damage to the structure,” says Klewicki.

Other features of the facility, which cost $3 million, are a 10-inch-thick poured concrete floor; moisture-proof walls; windows designed to accommodate laser measurement from the outside; a turntable; and drag plates on the floor for measuring aerodynamic force, as on an airplane.

Funding for the FPF was provided by the National Science Foundation through EPSCoR (Experimental Program to Stimulate Competitive Research), the Office of Naval Research, and UNH.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:
http://unh.edu/news/cj_nr/2010/nov/bp08tech_01.jpg
Caption: Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, introduces the new facility to alumni of the College of Engineering and Physical Sciences.
http://unh.edu/news/cj_nr/2010/nov/bp08tech_03.jpg
Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, in front of the two 400-horsepower fans that each move 250,000 cubic feet of air per minute
http://unh.edu/news/cj_nr/2010/nov/bp08tech_02.jpg
An exterior view of UNH’s new Flow Physics Facility.
Credit: All photos by Mike Ross, UNH Photographic Services.
Media contact: Beth Potier
UNH Media Relations
603-862-1566
beth.potier@unh.edu
Reporters and editors: Center for Fluid Physics director Joe Klewicki, professor of mechanical engineering at UNH, is available at joe.klewicki@unh.edu or 603-862-1781. The facility will be dedicated Tuesday, Dec. 7, 2010 at 2:30; to attend, contact Beth Potier at beth.potier@unh.edu.

Beth Potier | Newswise Science News
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>