Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow Flow: New Wind Tunnel is Largest of Its Type

18.11.2010
Facility Will Model More Efficient Aircraft, Better Weather Prediction

The University of New Hampshire is now home to a wind tunnel that is the largest of its type in the world.

At 300 feet long, the new Flow Physics Facility (FPF) is the world’s largest scientific quality boundary-layer wind tunnel facility. It will help engineers and scientists better understand the dynamics of turbulent boundary layers, informing the aerodynamics of situations such as atmospheric wind over the ocean, the flow of air over a commercial airplane or of sea water over a submarine.

Two 400-horsepower fans, each moving 250,000 cubic feet of air per minute, can generate a wind of approximately 28 miles per hour in the facility. The relatively low velocity of wind generated over a great distance makes for greater accuracy in measuring the turbulence that develops in a specific class of flows known as high Reynolds number flows.

“The philosophy behind this facility is the big and slow approach,” says Joe Klewicki, professor of mechanical engineering and director of the Center for Fluid Physics, as well as outgoing dean of the College of Engineering and Physical Sciences.

“Turbulence is often called the last unsolved problem in classical physics, and our lack of understanding has many adverse effects, from weather prediction to engineering design and practice,” says assistant professor of mechanical engineering Martin Wosnik, who helped design the facility with Klewicki and assistant professor of mechanical engineering Chris White. “This new facility will help us test, for the first time, new theories that are emerging to update the classical views of turbulence, which date from the 1930s and ‘40s.”

Researchers from UNH and beyond will use the facility to explore the aerodynamics of, for instance, the junction of the wing and fuselage on an airplane. “This is a huge issue for aircraft companies, because it enables them to better predict or even manipulate fuel economy,” says Klewicki. Or by placing a model cityscape on a turntable in the wind tunnel, engineers could model how the release of a chemical into the atmosphere would flow around buildings.

The wind tunnel is also ideally suited for human-scale aerodynamic studies, says Klewicki. By positioning athletes like skiers or bicyclists in the tunnel, scientists and coaches could improve helmet design, posture, or pedaling position for maximum efficiency. For elite competitors, “the smallest change in where your knee is when you pedal, for instance, can mean the difference between finishing first or fifth,” says Klewicki.

The FPF, which is on Waterworks Road on the eastern edge of campus, is essentially a rectangular box, 300 feet long by 20 feet wide. The fans create suction that pulls air through open garage-style doors on the opposite end of the facility: “Unless both garage doors are open, the fans won’t run. Without such precautions one could cause damage to the structure,” says Klewicki.

Other features of the facility, which cost $3 million, are a 10-inch-thick poured concrete floor; moisture-proof walls; windows designed to accommodate laser measurement from the outside; a turntable; and drag plates on the floor for measuring aerodynamic force, as on an airplane.

Funding for the FPF was provided by the National Science Foundation through EPSCoR (Experimental Program to Stimulate Competitive Research), the Office of Naval Research, and UNH.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:
http://unh.edu/news/cj_nr/2010/nov/bp08tech_01.jpg
Caption: Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, introduces the new facility to alumni of the College of Engineering and Physical Sciences.
http://unh.edu/news/cj_nr/2010/nov/bp08tech_03.jpg
Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, in front of the two 400-horsepower fans that each move 250,000 cubic feet of air per minute
http://unh.edu/news/cj_nr/2010/nov/bp08tech_02.jpg
An exterior view of UNH’s new Flow Physics Facility.
Credit: All photos by Mike Ross, UNH Photographic Services.
Media contact: Beth Potier
UNH Media Relations
603-862-1566
beth.potier@unh.edu
Reporters and editors: Center for Fluid Physics director Joe Klewicki, professor of mechanical engineering at UNH, is available at joe.klewicki@unh.edu or 603-862-1781. The facility will be dedicated Tuesday, Dec. 7, 2010 at 2:30; to attend, contact Beth Potier at beth.potier@unh.edu.

Beth Potier | Newswise Science News
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>