Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow Flow: New Wind Tunnel is Largest of Its Type

18.11.2010
Facility Will Model More Efficient Aircraft, Better Weather Prediction

The University of New Hampshire is now home to a wind tunnel that is the largest of its type in the world.

At 300 feet long, the new Flow Physics Facility (FPF) is the world’s largest scientific quality boundary-layer wind tunnel facility. It will help engineers and scientists better understand the dynamics of turbulent boundary layers, informing the aerodynamics of situations such as atmospheric wind over the ocean, the flow of air over a commercial airplane or of sea water over a submarine.

Two 400-horsepower fans, each moving 250,000 cubic feet of air per minute, can generate a wind of approximately 28 miles per hour in the facility. The relatively low velocity of wind generated over a great distance makes for greater accuracy in measuring the turbulence that develops in a specific class of flows known as high Reynolds number flows.

“The philosophy behind this facility is the big and slow approach,” says Joe Klewicki, professor of mechanical engineering and director of the Center for Fluid Physics, as well as outgoing dean of the College of Engineering and Physical Sciences.

“Turbulence is often called the last unsolved problem in classical physics, and our lack of understanding has many adverse effects, from weather prediction to engineering design and practice,” says assistant professor of mechanical engineering Martin Wosnik, who helped design the facility with Klewicki and assistant professor of mechanical engineering Chris White. “This new facility will help us test, for the first time, new theories that are emerging to update the classical views of turbulence, which date from the 1930s and ‘40s.”

Researchers from UNH and beyond will use the facility to explore the aerodynamics of, for instance, the junction of the wing and fuselage on an airplane. “This is a huge issue for aircraft companies, because it enables them to better predict or even manipulate fuel economy,” says Klewicki. Or by placing a model cityscape on a turntable in the wind tunnel, engineers could model how the release of a chemical into the atmosphere would flow around buildings.

The wind tunnel is also ideally suited for human-scale aerodynamic studies, says Klewicki. By positioning athletes like skiers or bicyclists in the tunnel, scientists and coaches could improve helmet design, posture, or pedaling position for maximum efficiency. For elite competitors, “the smallest change in where your knee is when you pedal, for instance, can mean the difference between finishing first or fifth,” says Klewicki.

The FPF, which is on Waterworks Road on the eastern edge of campus, is essentially a rectangular box, 300 feet long by 20 feet wide. The fans create suction that pulls air through open garage-style doors on the opposite end of the facility: “Unless both garage doors are open, the fans won’t run. Without such precautions one could cause damage to the structure,” says Klewicki.

Other features of the facility, which cost $3 million, are a 10-inch-thick poured concrete floor; moisture-proof walls; windows designed to accommodate laser measurement from the outside; a turntable; and drag plates on the floor for measuring aerodynamic force, as on an airplane.

Funding for the FPF was provided by the National Science Foundation through EPSCoR (Experimental Program to Stimulate Competitive Research), the Office of Naval Research, and UNH.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:
http://unh.edu/news/cj_nr/2010/nov/bp08tech_01.jpg
Caption: Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, introduces the new facility to alumni of the College of Engineering and Physical Sciences.
http://unh.edu/news/cj_nr/2010/nov/bp08tech_03.jpg
Flow Physics Facility director Joe Klewicki, professor of mechanical engineering at the University of New Hampshire, in front of the two 400-horsepower fans that each move 250,000 cubic feet of air per minute
http://unh.edu/news/cj_nr/2010/nov/bp08tech_02.jpg
An exterior view of UNH’s new Flow Physics Facility.
Credit: All photos by Mike Ross, UNH Photographic Services.
Media contact: Beth Potier
UNH Media Relations
603-862-1566
beth.potier@unh.edu
Reporters and editors: Center for Fluid Physics director Joe Klewicki, professor of mechanical engineering at UNH, is available at joe.klewicki@unh.edu or 603-862-1781. The facility will be dedicated Tuesday, Dec. 7, 2010 at 2:30; to attend, contact Beth Potier at beth.potier@unh.edu.

Beth Potier | Newswise Science News
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>