Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sloan Digital Sky Survey 3-D Map of Massive Galaxies, Distant Black Holes Offers Clues to Dark Matter and Energy

10.08.2012
“This is science at its collaborative best,” says SDSS scientific spokesperson and Pitt professor Michael Wood-Vasey

The Sloan Digital Sky Survey III (SDSS-III) has released the largest-ever three-dimensional map of massive galaxies and distant black holes, helping astronomers better explain the mysterious “dark matter” and “dark energy” that make up 96 percent of the universe.

According to SDSS-III scientific spokesperson and University of Pittsburgh assistant professor of physics and astronomy Michael Wood-Vasey, scientists using the map—titled Data Release 9 (DR9)— can retrace the Universe’s history over the last seven billion years. Wood-Vasey cowrote the DR9 summary paper featured on the arXiv database.

“This is science at its collaborative best,” said Wood-Vasey. “SDSS-III scientists work together to address big questions extending from our own galaxy to distant reaches of the Universe, and then they share that data with the world to allow anyone to make the next big discovery.”

The new DR9 map of the Universe includes images of 200 million galaxies and spectra measurements of how much light galaxies gives off at different wavelengths— of 1.35 million galaxies, including new spectra of 540,000 galaxies dating from when the universe was half its present age. Researchers at SDSS-III say that studying spectra is important because it allows scientists to figure out how much the Universe has expanded since the light left each galaxy.

Additionally, having this new data to analyze not only helps researchers understand the distant Universe, but also the Earth’s own cosmic backyard—the Milky Way Galaxy. DR9 includes better estimates regarding the temperatures and chemical compositions of more than a half million stars in the Milky Way.

DR9 represents the latest in a series of data releases stretching back to 2001. This release includes new data from the ongoing SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), which will eventually measure the positions of 1.5 million massive galaxies over the past seven billion years of cosmic time, as well as 160,000 quasars—giant black holes feeding on stars and gas—from as long ago as 12 billion years.

While all of these new images and spectra contain the promise of new discoveries about the universe, SDSS-III is only in the middle of its six-year survey and will release three times as much data by the time it has completed its work, in 2014.

All the newly released data is now available on the DR9 Web site, at http://www.sdss3.org/dr9. Additionally, the SkyServer Web site (http://skyserver.sdss3.org) includes lesson plans for teachers who use DR9 data to teach astronomy and other topics in science, technology, and mathematics.

About Sloan Digital Sky Survey III

The Sloan Digital Sky Survey III is one of the most ambitious and influential surveys in the history of astronomy. Throughout its eight years of operation (SDSS-I, 2000-2005; SDSS-II, 2005-2008, SDSS, 2008-2014), the Sloan Digital Sky Survey has obtained deep, multicolor images covering more than a quarter of the sky and has created 3-D maps containing more than 930,000 galaxies and 120,000 quasars.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, the University of Cambridge, Carnegie Mellon University, the University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, the Max Planck Institute for Astrophysics, the Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, the Ohio State University, Pennsylvania State University, the University of Portsmouth, Princeton University, the Spanish Participation Group, the University of Tokyo, the University of Utah, Vanderbilt University, the University of Virginia, the University of Washington, and Yale University.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>