Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slicing proteins with Occam's Razor

01.10.2010
Vermont scientists invent new way to view atomic motion of proteins

A cheetah lies still in the grass. Finally, a gazelle comes into view. The cheetah plunges forward, reaches sixty-five miles per hour in three seconds, and has the hapless gazelle by the jugular in less than a minute. Then it must catch its breath, resting before eating.

A blue whale surfaces, blasting water high from its blowhole. It breathes in great gasps, filling its thousand-gallon lungs with air. Then it descends again to look for krill, staying below for 10, 20, even 30 minutes before taking another breath.

Both animals need oxygen, of course. And both depend on the protein myoglobin to store and then release that oxygen within their working muscles. But how they need oxygen differs. The whale must have enough to last a whole dive. Its muscles have a high concentration of myoglobin that delivers oxygen steadily. In contrast, the cheetah's myoglobin must perform like a fast-shooting cannon. The cheetah needs to suddenly take up and release large doses of oxygen to stoke its explosive speed.

How does myoglobin do all that? For decades, biologists have wondered how -- and with what atomic motions, exactly -- the folded structure of myoglobin allows it to hold and release oxygen.

Now, two physicists at the University of Vermont have an answer. They've developed a new way to peer into the inner workings of proteins and detect which specific atoms are at work. Their work was published in the Aug. 27 issue of the journal Physical Review Letters.

Using myoglobin as a test, the scientists were able to home in on the critical functional piece of the protein, separating it from the vast number of other "jigglings and wigglings of atoms" says William DeWitt, a UVM graduate student and the lead author on the paper that describes the finding.

"We've been able to identify the motion of one particular amino acid -- this group of atoms called the distal histidine -- that controls the binding process," he says.

Shaped a bit like a tennis racket over a basket, this tiny arm of the protein moves, through thermal fluctuations, to open or close the binding site near the myoglobin's iron-filled center. "As the atoms move in one direction it becomes easier to bind oxygen," says DeWitt, "and as they move in the reverse direction it becomes less easy."

And how this distal histidine moves should vary between the whale and the cheetah. "I would imagine," says Kelvin Chu, associate professor of physics and DeWitt's co-author, "that there has been evolutionary pressure on every species to adapt this motion in the myoglobin for their particular oxygen-binding needs."

"That's a testable hypothesis," Chu says. "What we would expect to see across species is that the tennis rackets are in different places or move different amounts."

DeWitt and Chu's work extends far beyond myoglobin. The two physicists see broad application of their new method in creating custom-crafted proteins.

"Once you know what these motions are and what the important atoms are," says Chu, "you can make mutants of proteins that have different binding attributes." And these different attributes have promise in developing new biotechnologies "ranging from blood substitutes to organic solar cells," he says.

Proteins are a cell's heavy laborers: hauling water, taking out the trash, carrying in the groceries -- and trillions of other tasks that make life. But how the shape of a protein determines its function remains one of the most vexing and important questions in the physics of biology.

Proteins are not the static, Lego-like objects you might see in an x-ray photograph in a biochemistry textbook. Instead, made from long chains of amino acids scrunched into various blobs and globs, a protein is always jumping between slightly different structural arrangements due to thermal motion of its atoms. Even a modest-sized protein like myoglobin has more possible arrangements of its atoms than there are stars in the universe. And each of these arrangements slightly changes a protein's function.

"But what are the important motions that control its function?" asks Chu.

"Relating the structure of a protein to what it is doing is the holy grail," he says. For myoglobin at least, the two UVM scientists seem to have brought the prize a lot closer to hand.

Their method -- called temperature derivative spectroscopy or TDS -- involves cooling myoglobin to as low as -450 degrees Fahrenheit, about 18 degrees above absolute zero, and then measuring its oxygen-binding process. At these chilly temperatures, each protein basically gets stuck in just one arrangement. These individual atomic arrangements can't be observed directly, but, using infrared light, a pack of myoglobin molecules does yield a kind of group portrait -- a summing, called a TDS surface -- of the position of all the proteins as they bind to the oxygen in carbon monoxide.

The Vermont scientists' innovation comes largely from what they have been able to do with this group portrait.

"This scenario is called an inverse problem," DeWitt notes, "we have measured the effect but want to determine the cause." Unfortunately, a bit like asking what two numbers add up to ten, there are many solutions.

But, usually, nature does not build wasteful structures -- and though the universe is undoubtedly complex, it does not seem given to capricious complexity. In other words, the scientific principle of parsimony -- what philosophy students encounter as Occam's Razor -- suggests that the least complex explanation is the most likely.

Applying a mathematical version of this idea from Bayesian statistics, called the principle of maximum entropy, DeWitt and Chu went looking for the simplest solution to the TDS surface created by their group of myoglobin molecules. And the answer: the motion of the distal histidine most simply explains how myoglobin regulates oxygen binding.

They followed this prediction by performing a computer simulation of the molecular dynamics of the distal histidine, which confirmed their interpretation.

"Will did a lot of this on his own," says Chu, "He took the data, and the analysis was done on a MacPro," plus some time on the National Science Foundation's high-performance computer network, the TeraGrid.

"He's a clever guy," says Chu.

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu

Further reports about: Myoglobin Occam's Razor Slicing proteins TDS UVM amino acid blue whale surfaces

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>