Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-Step Doping Process Developed for Graphene

15.02.2010
A simple one-step process that produces both n-type and p-type doping of large-area graphene surfaces could facilitate use of the promising material for future electronic devices. The doping technique can also be used to increase conductivity in graphene nanoribbons used for interconnects.

By applying a commercially available spin-on-glass (SOG) material to graphene and then exposing it to electron-beam radiation, researchers at the Georgia Institute of Technology created both types of doping by simply varying the exposure time. Higher levels of e-beam energy produced p-type areas, while lower levels produced n-type areas.

The technique was used to fabricate high-resolution p-n junctions. When properly passivated, the doping created by the SOG is expected to remain indefinitely in the graphene sheets studied by the researchers.

“This is an enabling step toward making possible complementary metal oxide graphene transistors,” said Raghunath Murali, a senior research engineer in Georgia Tech’s Nanotechnology Research Center.

A paper describing the technique appears this week in the journal Applied Physics Letters. The research was supported by the Semiconductor Research Corporation and the Defense Advanced Research Projects Agency (DARPA) through the Interconnect Focus Center.

In the new doping process, Murali and graduate student Kevin Brenner begin by removing flakes of graphene one to four layers thick from a block of graphite. They place the material onto a surface of oxidized silicon, then fabricate a four-point contact device.

Next, they spin on films of hydrogen silsesquoxane (HSQ), then cure certain portions of the resulting thin film using electron beam radiation. The technique provides precise control over the amount of radiation and where it is applied to the graphene, with higher levels of energy corresponding to more cross-linking of the HSQ.

“We gave varying doses of electron-beam radiation and then studied how it influenced the properties of carriers in the graphene lattice,” Murali said. “The e-beam gave us a fine range of control that could be valuable for fabricating nanoscale devices. We can use an electron beam with a diameter of four or five nanometers that allows very precise doping patterns.”

Electronic measurements showed that a graphene p-n junction created by the new technique had large energy separations, indicating strong doping effects, he added.

Researchers elsewhere have demonstrated graphene doping using a variety of processes including soaking the material in various solutions and exposing it to a variety of gases. The Georgia Tech process is believed to be the first to provide both electron and hole doping from a single dopant material.

Doping processes used for graphene are likely to be significantly different from those established for silicon use, Murali said. In silicon, the doping step substitutes atoms of a different material for silicon atoms in the material’s lattice.

In the new single-step process for graphene, the doping is believed to introduce atoms of hydrogen and oxygen in the vicinity of the carbon lattice. The oxygen and hydrogen don’t replace carbon atoms, but instead occupy locations atop the lattice structure.

“Energy applied to the SOG breaks chemical bonds and releases hydrogen and oxygen which bond with the carbon lattice,” Murali said. “A high e-beam energy converts the whole SOG structure to more of a network, and then you have more oxygen than hydrogen, resulting in a p-type doping.”

In volume manufacturing, the electron beam radiation would likely be replaced by a conventional lithography process, Murali said. Varying the reflectance or transmission of the mask set would control the amount of radiation reaching the SOG, and that would determine whether n-type or p-type areas are created.

“Making everything in a single step would avoid some of the expensive lithography steps,” he said. “Gray-scale lithography would allow fine control of doping across the entire surface of the wafer.”

For doping bulk areas such as interconnects that do not require patterning, the researchers simply coat the area with HSQ and expose it to a plasma source. The technique can make the nanoribbons up to 10 times more conductive than untreated graphene.

Because HSQ is already familiar to the microelectronics industry, the one-step approach to doping could help integrate graphene into existing processes, avoiding a disruption of the massive semiconductor design and fabrication system, Murali noted.

Over the past two years, researchers in the Nanotechnology Research Center had observed changes caused by application of HSQ during electrical testing. Only recently did they take a closer look at what was happening to understand how to take advantage of the phenomenon.

For the future, they’d like to better understand how the process works and whether other polymers might provide better results.

“We need to have a better understanding of how to control this process because variability is one of the issues that must be controlled to make manufacturing feasible,” Murali explained. “We are trying to identify other polymers that may provide better control or stronger doping levels.”

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>