Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single photons produced electrically

16.08.2012
Physicists have succeeded in using semiconductor nanostructures to produce single photons electrically and transfer them via a quantum channel. The application of these single photon sources is seen as further progress toward broader use in secure data communication.

For data transmission over the Internet, electrical computer signals are converted into light signals and conducted via fiber optic cables to the recipient.


This structure produced at the University of Würzburg using semiconductor material with integrated quantum dot nanostructures emits single photons.

Image: Institute of Physics, University of Würzburg

Once there, they are converted back into electrical signals. These light signals can be tapped into on the cables, enabling unauthorized persons to intercept data without detection. However, this does not go undetected if single light particles, photons, are used for encryption based on quantum cryptography.

With this type of encryption, every single photon is polarized individually in a sequence of light particles – vertically, horizontally, or diagonally. Generally speaking, the type of polarization cannot be captured by a third party without changing it as a result. So, the sender and the recipient would notice immediately if an unauthorized person “eavesdropped” on their data transfer and tried to copy the original state of the light particle.

Lasers as single photon sources have disadvantages

The quantum cryptography technique that is currently applied uses greatly weakened lasers as single photon sources. Even though use of this technique has already begun, there are still considerable disadvantages. “With a weakened laser light single photons are released at completely random times, which means that sometimes several photons are also discharged simultaneously,” explains Sven Höfling from the Institute of Physics at the University of Würzburg.

This could then be exploited by hackers to extract information from the data flow without detection. Consequently, in quantum communication with weakened lasers, complex data transmission procedures have to be adopted to guarantee secure communication.

On the other hand, according to Höfling, an ideal single photon source only ever releases a photon when it is triggered by, for example, an electrical pulse. Physicists from the universities of Würzburg, Munich, and Stuttgart have now succeeded in applying such a single photon source in quantum communication.
Publication in the New Journal of Physics

The scientists are presenting their findings in the New Journal of Physics. One of the keys to their success was the close collaboration between the teams led by Professor Harald Weinfurter in Munich, Professor Peter Michler in Stuttgart, and Professors Martin Kamp and Alfred Forchel in Würzburg.

For their single photon sources, the researchers integrated nanostructures made of semiconductor material into microresonators. These sources are highly likely to emit a single photon with every electrical pulse. By implanting information into the polarization of photons, a key can be produced using quantum cryptography, as the researchers demonstrated in their laboratory experiments.

Quantum communication over longer distances

Of course, the scientists are fully aware that the transmission of photons has to work not just in the laboratory, but also over far greater distances. They have already performed successful work aimed at achieving this in a project funded by the Federal Ministry of Education and Research (BMBF). Within this project, they managed to realize secure quantum communication with electrically powered single photon sources over a free-space test distance of around 500 meters over rooftops in the center of Munich.

However, the scientists from Würzburg, Munich, and Stuttgart want to achieve transmission distances that are far greater than this. They are therefore currently researching building blocks for so-called quantum repeaters as part of a group funded by the BMBF involving other research teams. These are analogous to signal amplifiers in traditional communication technology and are essential for long-distance quantum communication.

“Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range”, Tobias Heindel et al, New Journal of Physics, 2 August 2012, doi:10.1088/1367-2630/14/8/083001

Contact

Dr. Sven Höfling, Institute of Physics at the University of Würzburg, T +49 (0)931 31-83613, sven.hoefling@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>