Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single photons produced electrically

16.08.2012
Physicists have succeeded in using semiconductor nanostructures to produce single photons electrically and transfer them via a quantum channel. The application of these single photon sources is seen as further progress toward broader use in secure data communication.

For data transmission over the Internet, electrical computer signals are converted into light signals and conducted via fiber optic cables to the recipient.


This structure produced at the University of Würzburg using semiconductor material with integrated quantum dot nanostructures emits single photons.

Image: Institute of Physics, University of Würzburg

Once there, they are converted back into electrical signals. These light signals can be tapped into on the cables, enabling unauthorized persons to intercept data without detection. However, this does not go undetected if single light particles, photons, are used for encryption based on quantum cryptography.

With this type of encryption, every single photon is polarized individually in a sequence of light particles – vertically, horizontally, or diagonally. Generally speaking, the type of polarization cannot be captured by a third party without changing it as a result. So, the sender and the recipient would notice immediately if an unauthorized person “eavesdropped” on their data transfer and tried to copy the original state of the light particle.

Lasers as single photon sources have disadvantages

The quantum cryptography technique that is currently applied uses greatly weakened lasers as single photon sources. Even though use of this technique has already begun, there are still considerable disadvantages. “With a weakened laser light single photons are released at completely random times, which means that sometimes several photons are also discharged simultaneously,” explains Sven Höfling from the Institute of Physics at the University of Würzburg.

This could then be exploited by hackers to extract information from the data flow without detection. Consequently, in quantum communication with weakened lasers, complex data transmission procedures have to be adopted to guarantee secure communication.

On the other hand, according to Höfling, an ideal single photon source only ever releases a photon when it is triggered by, for example, an electrical pulse. Physicists from the universities of Würzburg, Munich, and Stuttgart have now succeeded in applying such a single photon source in quantum communication.
Publication in the New Journal of Physics

The scientists are presenting their findings in the New Journal of Physics. One of the keys to their success was the close collaboration between the teams led by Professor Harald Weinfurter in Munich, Professor Peter Michler in Stuttgart, and Professors Martin Kamp and Alfred Forchel in Würzburg.

For their single photon sources, the researchers integrated nanostructures made of semiconductor material into microresonators. These sources are highly likely to emit a single photon with every electrical pulse. By implanting information into the polarization of photons, a key can be produced using quantum cryptography, as the researchers demonstrated in their laboratory experiments.

Quantum communication over longer distances

Of course, the scientists are fully aware that the transmission of photons has to work not just in the laboratory, but also over far greater distances. They have already performed successful work aimed at achieving this in a project funded by the Federal Ministry of Education and Research (BMBF). Within this project, they managed to realize secure quantum communication with electrically powered single photon sources over a free-space test distance of around 500 meters over rooftops in the center of Munich.

However, the scientists from Würzburg, Munich, and Stuttgart want to achieve transmission distances that are far greater than this. They are therefore currently researching building blocks for so-called quantum repeaters as part of a group funded by the BMBF involving other research teams. These are analogous to signal amplifiers in traditional communication technology and are essential for long-distance quantum communication.

“Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range”, Tobias Heindel et al, New Journal of Physics, 2 August 2012, doi:10.1088/1367-2630/14/8/083001

Contact

Dr. Sven Höfling, Institute of Physics at the University of Würzburg, T +49 (0)931 31-83613, sven.hoefling@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>