Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single photons for optical information transfer

28.10.2011
Managing light to carry computer data, such as text, audio and video, is possible today with laser light beams that are guided along a fibre-optic cable. These waves consist of countless billions of photons, which carry information down the fibre across continents.

A research team at the University of Alberta wants to refine the optical transmission of information by using a single photon, the fundamental building block of light that can allow unprecedented applications in optical information transfer.

Zubin Jacob, a U of A electrical and computer engineering researcher, says that rather than spreading data over waves of light, the goal is to use single particles of light, photons. "Unfortunately, the efficient generation of single photons for practical applications is a serious engineering challenge," said Jacob.

Jacob and his research team are looking into metamaterials to tackle this problem. A metamaterial is a medium that has designer nanostructures in it, giving it technical capabilities beyond any materials we currently have. The metamaterial would efficiently collect single photons of light and allow their transmission.

At other universities, researchers are looking at attaching single photons to waves of electrons. The electrons and photons combine to form a plasmon wave that can be transmitted on a metal nanowire.

Jacob says the benefit of working with single photons for transmitting computer data is the ability to encode much more complex information on an individual particle of light. "A single photon could carry encryption codes, which are far more complex than the security password information we currently use to protect sensitive data."

Jacob says that this technology is at least 10 years away and the products are not aimed at general consumers. "This technology is aimed at markets such as the military that requires extremely high levels of data encryption."

The development in this field of research combining nanophotonics and quantum technologies is being published Oct. 28 in the journal Science.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>