Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single laser stops molecular tumbling motion instantly


Quantum control of molecules could lead to extremely fast computers

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story.

Now Northwestern University scientists have figured out an elegant way to stop a molecule from tumbling so that its potential for new applications can be harnessed: shine a single laser on a trapped molecule and it instantly cools to the temperature of outer space, stopping the rotation of the molecule.

"It's counterintuitive that the molecule gets colder, not hotter when we shine intense laser light on it," said Brian Odom, who led the research. He is an assistant professor of physics and astronomy in the Weinberg College of Arts and Sciences. "We modify the spectrum of a broadband laser, such that nearly all the rotational energy is removed from the illuminated molecules. We are the first to stop molecular tumbling in such a powerful yet simple way."

It is not very difficult to trap many types of molecules and hold them precisely in place, Odom said, but they stubbornly persist in rotating just as much as if they were not trapped at all. Using their customized laser, he and his colleagues cooled singly charged aluminum monohydride molecules from room temperature to 4 degrees Kelvin (minus 452 degrees Fahrenheit) in a fraction of a second. The abrupt temperature drop stopped the molecules' normally persistent tumbling motion in its tracks.

Such control of molecules, of their rotational and vibrational states, is essential to using molecules in the construction of superfast quantum computers -- machines whose processing power would be exponentially faster than today's computers.

The new technique is faster, easier and more practical and efficient than techniques developed thus far to control molecules. Details will be published Sept. 2 by the journal Nature Communications.

Previously, it was long assumed that far too many lasers would be required to cool molecular rotations. However, broadband laser light contains many different frequency components, and the Northwestern researchers used those components to custom design a laser for their task. They filtered out the part of the spectrum that causes molecules to start spinning faster (and become hotter) while leaving in the useful frequency components that slows the molecules down (and also cools them).

Also noteworthy, Odom said, is that they cooled the molecule to its very lowest quantum rotational state using a room-temperature apparatus, not the cumbersome liquid helium cryostats some other researchers have used.

"In our quantum world, every type of motion has only certain allowed energies," said Odom, an atomic physicist. "If I want to slow down a molecule, quantum mechanics tells me that it happens in steps. And there is a very lowest step that we can get the molecule down to, which is what we've done."

Odom and his team chose to work with singly charged aluminum monohydride molecules because the molecule does not vibrate when it interacts with a laser.

"By choosing the right molecule we were able to stop the molecules from rotating without worrying about the vibrations," Odom said.

Aluminum monohydride molecules are inexpensive and could be used in wide range of applications, beyond quantum computing.

"There is a lot you can do if you get one species of molecule under control, such as we've done in this study," Odom said.

In addition to quantum information processing, applications that could springboard off this new ability to control molecular rotors include ultracold quantum-controlled chemistry and tests of whether fundamental constants are truly static or if they vary in time.

The title of the paper is "Broadband optical cooling of molecular rotors from room temperature to the ground state."


In addition to Odom, authors of the paper are Chien-Yu Lien, Christopher M. Seck, Yen-Wei Lin, Jason H.V. Nguyen, David A. Tabor, all of Northwestern.

Megan Fellman | Eurek Alert!
Further information:

Further reports about: Northwestern astronomy processing rotors shine spectrum steps temperature

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>