Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single atoms for detecting extremely weak forces

MPQ-scientists demonstrate that due to synchronisation atoms can be influenced by forces as weak as 5 yoctonewton.

Back in the 17th century the Dutch physicist Christiaan Huygens made the observation that the oscillation of two pendulums synchronize once they get under mutual influence.

This holds for even very loose coupling, for instance, when both pendulums are mounted onto the same wall. Interestingly, a large variety of oscillating systems shows this kind of behaviour, ranging from organ pipes to lasers or electronic circuits. A team of scientists in the Laser Sepctroscopy Division of Professor Theodor W. Hänsch at the Max Planck Institute of Quantum Optics (MPQ) has now succeeded in observing this technically rather important phenomenon for a single extremely cold atom (Phys. Rev. Lett. 105, 013004, 2 July 2010). As was shown in the experiment, the forces necessary for the synchronisation of the atomic oscillation with an external radiofrequency signal were as low as 5 yoctonewton (5 x 10^-24 N). Hence, single atoms can serve as extremely sensitive detectors for very weak forces – perhaps even sensitive enough for measuring the magnetic moment of a single molecule for the first time.

The experiment starts with storing a single magnesium ion in a so-called Paul-trap. The alternating fields of the trap keep the atom at a fixed point in space, whereas the very high vacuum guarantees that the ion oscillates without perturbation. The ion is then addressed by two well tuned laser beams which make it oscillate with an amplitude of around a tenth of a millimetre. High-resolution optics and a sensitive camera make it possible to register this oscillation by the emitted stray light. In order to investigate the synchronisation of the oscillation of the optically excited atom with an external source a second alternating field is applied to an electrode nearby, and the ion oscillation is monitored with a stroboscope. Once the frequency of the external signal is close enough to the oscillation frequency of the ion its motion sychronizes with the external field.

A careful determination of the forces exerted by the applied ac-field shows that even very small excitations of only 5 yN give rise to synchronisation. Without the experimental “tricks” described above it is almost impossible to detect forces of this order. For example, a force of 5 yN would displace the ion by only around one nanometer (10^-9 metre), whereas the amplitude of the ion oscillation due to its temperature already amounts to 5000 nanometres.

The extremely high sensitivity demonstrated in this experiment offers a variety of applications. For example, it could be used to measure the magnetic field of a single molecule for testing fundamental interactions. The experiment described here is a promising step in this direction. Maximilian Herrmann

Original publication:
S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T.W. Hänsch,
K. Vahala, and Th. Udem
Injection locking of a trapped-ion phonon laser
Physical Review Letters 105, 013004 (2010)
Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics at Ludwig-Maximilians-Universität Munich
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 702/712
Fax: +49 - 89 / 32905 312
Dr. Maximilian Herrmann
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 – 266
Fax: +49 - 89 / 32905 – 312
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213

Dr. Olivia Meyer-Streng | idw
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>