Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations show how to turn graphene's defects into assets

12.10.2016

Researchers at Penn State, the Department of Energy's Oak Ridge National Laboratory and Lockheed Martin Space Systems Company have developed methods to control defects in two-dimensional materials, such as graphene, that may lead to improved membranes for water desalination, energy storage, sensing or advanced protective coatings.

For a two-dimensional, one-atom-thick material like graphene, defects such as small cracks or holes can make a big difference in performance. Usually, these defects are considered undesirable. But if the defects can be controlled, they can be used to engineer new, desirable properties into the material.


This is the simulated collision path of a Krypton-ion (blue) with a defected graphene sheet and subsequent formation of a carbon vacancy (red). Red color shading indicates local strain in the graphene.

Credit: Kichul Yoon, Penn State

"As long as you can control defects, you might be able to synthesize into graphene whatever kinds of response the graphenematerial will give you," said Adri van Duin, Kenneth Kuan-Yo Kuo Early Career Professor and professor of mechanical engineering and chemical engineering, Penn State and corresponding author on a recent paper in ACS Nano. "But that does require that you have very good control over defect structure and defect behavior. What we have done here is a pretty strong step towards that."

van Duin is the co-inventor and main developer of a mathematical modeling and simulation technique called the Reactive Force Field Method (ReaxFF), which is capable of predicting the interactions of thousands of atoms when they are perturbed by an external force, in this case the bombardment of graphene by noble gas atoms.

Noble gases -- helium, neon, argon, krypton and xzenon-- are frequently used to create defects in graphene to enhance its properties. By knocking one or more carbon atoms out of graphene's chicken wire-shaped structure, the resulting hole can be filled by atoms of another material or by specific molecules in a process called doping. Doping can change the chemical or electrical properties of the graphene to, to, for example, allow water molecules to flow through a membrane while rejecting salt particles.

"We have done a series of atomistic scale simulations where we accelerate noble gas ions into the graphene," said van Duin who is also director, Materials Computation Center, part of the user facility of Penn State's Materials Research Institute. "The simulations gave much the same defect patterns as experiments. That means our simulations can tell experimentalists what dose of atoms at which acceleration they need to get those types of defects."

Because defects can morph into different shapes or move around in the seconds after creation, his group also simulates putting the graphene in an oven and annealing -- heating at high temperature -- to stabilize the structure.

It is unusual for an atomistic simulation to correspond to the same size, time and exposure range as an experiment due to the computational expense of doing interactions among thousands of atoms over the time scale required to stabilize a material, van Duin said. ReaxFF, developed by van Duin and Caltech's William A. Goddard, is able to model chemical and physical interactions in molecules and materials as bonds between atoms form and break.

"This study provides insight into the atomistic scale details of graphene irradiation and is a preliminary step in designing functionalized carbon materials in two dimensions," said Kichuel Yoon, the paper's lead author and a graduate student in van Duin's group.

van Duin adds, "Clearly there is nothing that makes this exclusive to graphene. Any 2D material can be treated with the same simulations. Anyone who wants to dope a 2D material or understand defects will be interested in these simulations."

The researchers intend to continue working with Lockheed Martin on aerospace applications and will also pursue the goal of graphene-based water desalination.

Jacob Swett of Lockheed Martin prepared the samples used in experiments and was crucial in moving the project forward.

To correlate simulations with experiments, the researchers relied upon the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility at ORNL, to create defects using ion bombardment and subsequently characterizing those defects using atomic-resolution imaging.

"At CNMS, we have state-of-the-art Helium and Neon ion beam and aberration-corrected scanning transmission electron microscopy instruments that permit atomistic scale characterization," said Raymond Unocic, an R&D staff scientist at ORNL.

###

Raymond Unocic, senior scientist at Oak Ridge National Laboratory was responsible for the imaging. Other contributors to the paper, "Atomistic-Scale Simulations of Defect Formation in Graphene Under Noble Gas Ion Irradiation," were Ali Rahnamoun, a Ph.D. student in van Duin's group, and Vighter Iberi, David Cullen, Stephen Jesse, Ivan Vlassiouk, Alex Belianinov, Xiahan Sang, Olga Ovchinnikova, and Adam Rondinone, all at ORNL, who contributed to the experimental modification and characterization of graphene.

The Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy supported this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu

A'ndrea Elyse Messer | EurekAlert!

Further reports about: Energy graphene interactions transmission electron microscopy

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>