Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations Illuminate Universe's First Twin Stars

14.07.2009
The earliest stars in the universe formed not only as individuals, but sometimes also as twins, according to a paper published today in Science Express.

By creating robust simulations of the early universe, astrophysicists Matthew Turk and Tom Abel of the Kavli Institute for Particle Astrophysics and Cosmology, located at the Department of Energy’s SLAC National Accelerator Laboratory, and Brian O'Shea of Michigan State University have gained the most detailed understanding to date of the formation of the first stars.

"We used to think that these stars formed by themselves, but now we see from our computer simulations that sometimes they have siblings," said Turk. "These stars provide the seeds of next generation star formation, so by understanding them we can better understand how other stars and galaxies formed."

To make this discovery, the researchers created an extremely detailed computer simulation of early star formation. Into this virtual universe they sprinkled primordial gas and dark matter as it existed soon after the Big Bang, data they obtained from observations of the cosmic microwave background. This mostly uniform radiation—a faint glow of radio waves spread across the entire sky—contains subtle variations that reflect the beginning of all structure in the universe.

Turk, Abel and O'Shea ran five data-intensive simulations, each of which covered a 400 quadrillion cubic mile volume of the universe and took about three weeks to run on 64 processors. The simulations focused on the first Population III stars: massive, hot stars thought to have formed a mere several hundred million years after the Big Bang.

As the researchers watched their simulated universe evolve, waves of gas and dark matter swirled through the hot, dense universe. As the universe cooled, gravity began to draw the matter together into clumps. In areas rich with matter, stars began to form. And, in one out of the researchers' five simulations, a single cloud of dust and dark matter formed into "twin" stars: one with a mass equivalent to about 10 suns, and one with a mass equivalent to about 6.3 suns. Both of them were still growing at the end of the calculation and will likely grow to many times that mass.

"We ran five of these calculations starting from the beginning of the universe, and to our surprise one of them was special," said Abel. "This opens a whole new realm of research possibilities. These stars could evolve into two black holes, which could have created gravitational waves we could detect with an instrument like the Laser Interferometer Gravitational Wave Observatory and, if they fall into bigger black holes, for the Laser Interferometer Space Antenna. Or one of the stars could evolve into a black hole that could create gamma-ray bursts that we could detect with the Swift mission and the Fermi Gamma-ray Space Telescope."

Turk added: "This will help us fine-tune our models for how structure in the universe formed and evolved. Understanding the very early stars helps us understand what we see today. It even helps explain how and when some of the atoms now on earth and in our bodies were first formed."

The Kavli Institute for Particle Astrophysics and Cosmology, initiated by a grant from Fred Kavli and the Kavli Foundation, is a joint institute of Stanford University and SLAC National Accelerator Laboratory.

SLAC is a multi-program laboratory exploring frontier questions in astrophysics, photon science, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford for the U.S. Department of Energy Office of Science.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>