Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities

16.08.2016

Physicists led by Gerrit Kramer at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have conducted simulations that suggest that applying magnetic fields to fusion plasmas can control instabilities known as Alfvén waves that can reduce the efficiency of fusion reactions. Such instabilities can cause quickly moving charged particles called "fast ions" to escape from the core of the plasma, which is corralled within machines known as tokamaks.

Controlling these instabilities leads to higher temperatures within tokamaks and thus more efficient fusion processes. The research was published in the August issue of Plasma Physics and Controlled Fusion and funded by the DOE Office of Science (Fusion Energy Sciences).


Magnetic perturbations in a fusion plasma are shown.

Credit: Gerrit Kramer

"Controlling and suppressing the instabilities helps improve the fast-ion confinement and plasma performance," said Kramer, a research physicist at the Laboratory. "You want to suppress the Alfvén waves as much as possible so the fast ions stay in the plasma and help heat it."

The team gathered data from experiments conducted on the National Spherical Torus Experiment (NSTX) at PPPL before the tokamak was recently upgraded. Then they conducted plasma simulations on a PPPL computer cluster.

The simulations showed that externally applied magnetic perturbations can block the growth of Alfvén waves. The perturbations reduce the gradient, or difference in velocity, of the ions as they zoom around the tokamak. This process calms disturbances within the plasma. "If you reduce the velocity gradient, you can prevent the waves from getting excited," notes Kramer.

The simulations also showed that magnetic perturbations can calm Alfvén waves that have already formed. The perturbations alter the frequency of the plasma vibration so that it matches the frequency of the wave. "The plasma absorbs all the energy of the wave, and the wave stops vibrating," said Kramer.

In addition, the simulations indicated that when applied to tokamaks with relatively weak magnetic fields, the external magnetic perturbations could dislodge fast ions from the plasma directly, causing the plasma to cool.

###

Along with Kramer, the research team included scientists from General Atomics, Oak Ridge National Laboratory, the University of California, Los Angeles, and the University of California, Irvine.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | idw - Informationsdienst Wissenschaft

Further reports about: Controlling Plasma basic research fusion energy magnetic fields perturbations

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>