Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating Flow From Volcanoes and Oil Spills

14.08.2013
Study in the journal Physics of Fluids will help scientists understand and predict paths of debris and destruction from natural and manmade disasters

Some time around 37,000 BCE a massive volcano erupted in the Campanian region of Italy, blanketing much of Europe with ash, stunting plant growth and possibly dooming the Neanderthals. While our prehistoric relatives had no way to know the ash cloud was coming, a recent study provides a new tool that may have predicted what path volcanic debris would take.

"This paper provides a model for the pattern of the ash cloud if the wind is blowing past an eruption of a given size," said Peter Baines, a scientist at the University of Melbourne in Australia who did the study. He published his work in the journal Physics of Fluids.

Volcanic eruptions are an example of what Baines calls an "intrusion." Other examples include exhaust rising from a chimney, sewage flowing into the ocean, and the oil spilling underwater in the 2010 Deepwater Horizon disaster. In all these events, a fluid rises into a density-stratified environment like the atmosphere or the ocean. As the fluid rises, it is pushed by winds or currents, and this crossflow can cause the intruding fluid to disperse far from its origin.

Scientists have previously modeled intrusions into a completely calm environment, but before Baines nobody had ever attempted to introduce the effect of crosswinds, a necessary step toward making such models more realistic and useful.

Predicting Ash and Oil Flows

Baines thinks his work could be used to estimate how much ash is pouring out of a volcano, or how fast oil is gushing from a hole in the sea floor.

Baines is now working with volcanologists in Britain to apply his model to historic eruptions like the Campanian event and the catastrophic Toba supereruption that occurred around 73,000 years ago in Indonesia. The scientists are hoping to use ash deposits from these volcanoes to develop a sharper picture of the amount and speed of the ejected material.

"Most of what we know about prehistoric eruptions is from sedimentary records," said Baines. "You then have to try to infer what the nature of the eruption was, when this is the only information you’ve got."

Baines said his model can also help forecast the deposition patterns of future eruptions. And that should give us a big leg up on the poor Neanderthals.

How the Model Works

To understand how intrusions work in the presence of crossflows, Baines developed what he calls a semi-analytical model. He began with fluid dynamics equations, and then used numerical calculations to arrive at approximate solutions for specifics combinations of source flow and spread rates, and crosswind speed. He found that, under normal wind speeds, the intruding fluid reached a maximum thickness at a certain distance upstream from the source, and thinned in the downstream direction. The distance to the upstream stagnation point depended much more on the rate of source flow than the crossflow speed.

The article, "The dynamics of intrusions into a density-stratified crossflow" by Peter G. Baines, appears in the Journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4811850

ABOUT THE JOURNAL
Physics of Fluids, published by the AIP Publishing with the cooperation of the American Physical Society (APS) Division of Fluid Dynamics, is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>