Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simulating Flow From Volcanoes and Oil Spills

Study in the journal Physics of Fluids will help scientists understand and predict paths of debris and destruction from natural and manmade disasters

Some time around 37,000 BCE a massive volcano erupted in the Campanian region of Italy, blanketing much of Europe with ash, stunting plant growth and possibly dooming the Neanderthals. While our prehistoric relatives had no way to know the ash cloud was coming, a recent study provides a new tool that may have predicted what path volcanic debris would take.

"This paper provides a model for the pattern of the ash cloud if the wind is blowing past an eruption of a given size," said Peter Baines, a scientist at the University of Melbourne in Australia who did the study. He published his work in the journal Physics of Fluids.

Volcanic eruptions are an example of what Baines calls an "intrusion." Other examples include exhaust rising from a chimney, sewage flowing into the ocean, and the oil spilling underwater in the 2010 Deepwater Horizon disaster. In all these events, a fluid rises into a density-stratified environment like the atmosphere or the ocean. As the fluid rises, it is pushed by winds or currents, and this crossflow can cause the intruding fluid to disperse far from its origin.

Scientists have previously modeled intrusions into a completely calm environment, but before Baines nobody had ever attempted to introduce the effect of crosswinds, a necessary step toward making such models more realistic and useful.

Predicting Ash and Oil Flows

Baines thinks his work could be used to estimate how much ash is pouring out of a volcano, or how fast oil is gushing from a hole in the sea floor.

Baines is now working with volcanologists in Britain to apply his model to historic eruptions like the Campanian event and the catastrophic Toba supereruption that occurred around 73,000 years ago in Indonesia. The scientists are hoping to use ash deposits from these volcanoes to develop a sharper picture of the amount and speed of the ejected material.

"Most of what we know about prehistoric eruptions is from sedimentary records," said Baines. "You then have to try to infer what the nature of the eruption was, when this is the only information you’ve got."

Baines said his model can also help forecast the deposition patterns of future eruptions. And that should give us a big leg up on the poor Neanderthals.

How the Model Works

To understand how intrusions work in the presence of crossflows, Baines developed what he calls a semi-analytical model. He began with fluid dynamics equations, and then used numerical calculations to arrive at approximate solutions for specifics combinations of source flow and spread rates, and crosswind speed. He found that, under normal wind speeds, the intruding fluid reached a maximum thickness at a certain distance upstream from the source, and thinned in the downstream direction. The distance to the upstream stagnation point depended much more on the rate of source flow than the crossflow speed.

The article, "The dynamics of intrusions into a density-stratified crossflow" by Peter G. Baines, appears in the Journal Physics of Fluids. See:

Physics of Fluids, published by the AIP Publishing with the cooperation of the American Physical Society (APS) Division of Fluid Dynamics, is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See:

Jason Socrates Bardi | Newswise
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>