Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Micro-Islands and Nano-Spikes Channel Water on Glass Slides

30.03.2009
University of Arkansas engineering researchers have created stable superhydrophilic surfaces on a glass substrate. The surfaces, made of randomly placed and densely distributed micron-sized silicon islands with nano-sized spikes, allow water to quickly penetrate textures and spread over the surface.

Working at the nanoscale level, University of Arkansas engineering researchers have created stable superhydrophilic surfaces on a glass substrate. The surfaces, made of randomly placed and densely distributed micron-sized silicon islands with nano-sized spikes, allow water to quickly penetrate textures and spread over the surface.

The research will aid in the development of commercial products with superior self-cleaning and anti-fogging properties and could lead to the design of microfluidic chips with a network of tracks or channels to better control the flow of liquid.

Discovered in the mid-1990s, superhydrophilicity is the physical condition of a material such that when water is applied to the material, the water forms no contact angle and thus prevents beading.

“Superhydrophilic surfaces exhibit self-cleaning properties because the surface has a higher affinity to water than to oils and other contaminants,” said Min Zou, associate professor of mechanical engineering and author of the study published in the Nanotechnology. “The surfaces also exhibit anti-fogging properties because a thin, uniform film of water that does not scatter light forms on the surface.”

Zou and three students tested the wettability of glass substrates by texturing the slides through a process known as aluminum-induced crystallization of amorphous silicon.

“Aluminum-induced crystallization of amorphous silicon has been studied extensively to produce films for electronic and photovoltaic applications,” Zou said, “but it has never been investigated for increasing the wettability of solid substrates.”

The researchers deposited 100 nanometers of amorphous silicon on the glass slides and then a layer of aluminum on top of the amorphous silicon. They annealed the sample at 650 degrees Celsius for 10 minutes and then removed the residual aluminum through selective wet etching. The annealing – a process of heating and cooling – created the irregularly shaped micro-islands with nano-scale spikes.

“When a water droplet reached the silicon textures, particularly the nano-sized spikes, it quickly penetrated the textures and suffused the surface,” Zou said. “The stability of the islands and spikes ensured the stability of the superhydrophilicity.”

The researchers also discovered that the textured surface becomes superhydrophobic when treated with octafluorocyclobutane, a compound of carbon and fluorine used in the production and processing of semiconductor materials and devices. Hydrophobic describes the physical property of a molecule repelled from water. Superhydrophobicity refers to material surfaces that have a water contact angle greater than 150 degrees. In other words, they are materials with surfaces that are extremely difficult to wet.

An electronic copy of researchers’ article is available upon request.

Min Zou, associate professor, mechanical engineering
College of Engineering
479-575-6671, mzou@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>