Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signs of ideal surfing conditions spotted in ocean of solar wind

01.09.2009
Researchers at the University of Warwick have found what could be the signal of ideal wave “surfing” conditions for individual particles within the massive turbulent ocean of the solar wind.

The discovery could give a new insight into just how energy is dissipated in solar system sized plasmas such as the solar wind and could provide significant clues to scientists developing fusion power which relies on plasmas.

The research, led by Khurom Kiyanai and Professor Sandra Chapman in the University of Warwick’s Centre for Fusion, Space and Astrophysics, looked at data from the Cluster spacecraft quartet to obtain a comparatively “quiet” slice of the solar wind as it progressed over an hour travelling covering roughly 2,340,000 Kilometres.

In space, on these large scales, and quiet conditions, nature provides an almost perfect experiment to study turbulence which could not be done on Earth in a laboratory. This plasma energy does eventually dissipate. One obvious way of understanding how such energetic plasma could dissipate this energy would be if the particles within the plasma collided with each other. However the solar wind is an example of a “Collisionless Plasma”. The individual particles within that flow are still separated by massive distances so cannot directly interact with each other. They typically collide only once or twice with anything on their journey from the Sun to the Earth.

The University of Warwick Centre for Fusion, Space and Astrophysics led team drilled down into the data on this 2,340,000 Kilometres zooming down to see how the turbulence works on these different length scales which might provide some clue as to how the plasma was able to dissipate energy.

When the researchers were able to make observations all the way down to about I kilometre they could resolve the behaviour of individual particles within the total 2,340,000 kilometres slice of solar wind. These regions, which held just one particle of the plasma, were themselves almost a kilometre in size. The researchers were surprised to see a new kind of turbulence on these small scales.

At this particular scale they saw that the levels of turbulence switched from being mutlifractal to single fractal pattern. This single fractal pattern turbulence appears just right to create and sustain waves that can interact with the individual particles in the solar wind. University of Warwick astrophysicist Khurom Kiyani said: “The particles in this “collisionless plasma” may too spread out to collide with each other but this could indicate that they can, and do, interact with waves and surfing these ideal waves is what allows them to dissipate their energy.”

University of Warwick astrophysicist Professor Sandra Chapman said “We have been able to drill down through a vast ocean of data covering well over two million kilometres to get an insight in to what is happening in an area about the size of a beach, and on all length scales in between. We believe we are seeing waves on that beach that are providing the ideal surfing conditions to allow plasma particles to exchange energy without collisions.”

Professor Sandra Chapman also said “These results are not just an interesting piece of astrophysics as the work has been led by a ‘Centre for Fusion, Space and Astrophysics’ the results have also immediately come to the attention of our colleagues working to increase the stability of plasmas involved in the generation of fusion energy. Turbulence is a big problem in keeping the hot plasma confined long enough for burning to take place to generate fusion power.“

The research entitled Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence has just been published in Physical Review Letters and was conducted by Khurom Kiyani, and Professor Sandra Chapman of the University of Warwick in the UK; Yu.V. Khotyaintsev of Swedish Institute of Space Physics, Uppsala, Sweden; M.W. Dunlop, Rutherford Appleton Laboratory, United Kingdom; and F. Sahraoui of 4NASA Goddard Space Flight Center US and the Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique, France.

Note for editors: The University of Warwick researchers are funded by EPSRC (The Engineering and Physical Sciences Research Council) and STFC (The Science and Technology Facilities Council) and thank both for their continuing support.

For further Information please contact:

Professor Sandra Chapman
Centre for Fusion, Space and Astrophysics
Department of Physics
University of Warwick
www.warwick.ac.uk/go/cfsa
S.C.Chapman@warwick.ac.uk
Tel: +44(0)2476 523390
Peter Dunn, Press and Media Relations Manager
University of Warwick +44(0)2476 523708
or mobile/cell +44(0)7767 655860
p.j.dunn@warwick.ac.uk
twitter: @peterjdunn

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>