Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sights are set on the Vela pulsar

03.07.2014

The first data from H.E.S.S. II show the pulsed gamma-ray signal

The Vela pulsar provided a successful premiere for the new 28-metre Cherenkov telescope in Namibia. The pulsed radiation from Vela is the first to be measured in the southern sky and the performance of the High Energy Spectroscopic System (H.E.S.S.) has been proved once again.


Successful novice: The 28-metre H.E.S.S. II telescope integrated into the H.E.S.S. Cherenkov telescope array.

© MPIK/Christian Föhr


Stormy universe: The Vela pulsar and the pulsar wind nebula surrounding it, as seen by the Chandra X-ray satellite. © NASA/CXC/PSU/G.Pavlov et al.

The celestial body in the Vela (sail) constellation is thus only the second pulsar ever from which gamma rays have been detected by a ground-based telescope. The construction and set-up of the 28-metre telescope was led by the Max Planck Institute for Nuclear Physics in Heidelberg.

This discovery has been accessible by the operation of the new 28-meter diameter telescope. Construction of the telescope structure has been led by the Max-Planck-Institute for Nuclear Physics (MPIK). Michael Panter, the coordinator of the telescope construction said:

“Building the largest telescope of its kind was very challenging.  We had to mount 600 tons of steel with high precision. This telescope will enable us to study new source types and explore a wide range of astrophysical phenomena.” About 50% of the project’s funding was granted by the Max Planck Society. The instrumentation of the focal plane was developed in France.

Since the upgrade of the H.E.S.S. experiment in Namibia in 2012, H.E.S.S. II with its fifth and larger Cherenkov telescope CT5 is the first Cherenkov telescope system with telescopes of different sizes detecting cosmic TeV gamma rays in sync. CT5 is placed in the centre of the system, extends the energy range to lower energies and allows for the detection of cosmic particle accelerators down to 30 GeV.

In cooperation with scientists throughout Europe, a tailor-made reconstruction analysis was developed for these low-energy gamma rays. With this, H.E.S.S. scientists were able to detect a pulsed, repeating gamma-ray signal in the energy range of 30 GeV and attribute it to the Vela pulsar. This opens the door to new observation possibilities of the inner Galaxy. The first results presented at a conference on June 23 2014 by Christian Stegmann, spokesperson of the H.E.S.S. collaboration.

Besides intensive efforts in the construction and calibration of CT5, two years of intensive software development determined this success. “For the reconstruction of the data from CT5, we elaborated a highly sensitive analysis based on extremely complex statistical algorithms.

This allows us to detect gamma radiation of only 30 GeV from ground level,” explains Wilfried Domainko,  from the local H.E.S.S. experimental group at MPIK. “Since we are able to survey a projected area of 10 hectares in the atmosphere, we have a considerably higher yield of gamma rays than for example satellite experiments like Fermi LAT.” From some sources, it is possible to spot up to one gamma per second – a record.

The data reveal regular gamma ray pulses, repeating every 89 milliseconds, coming exactly from the direction of the Vela pulsar. The reconstructed energies of these gamma rays are in the range of 30 GeV. This shows that H.E.S.S. for the first time successfully measured pulsed radiation in the southern sky.

“The whole Milky Way is full of pulsars and from Namibia we can exactly see into its centre. The H.E.S.S. data show that, with Cherenkov telescopes, we will still discover quite a number of mysteries in the universe,” beams Werner Hofmann, director at the MPIK in Heidelberg.

Cherenkov telescope systems consist of large segmented mirrors which focus optical Cherenkov light flashes. These flashes are generated in the atmosphere, last only a few nanoseconds and are invisible for the human eye. They are generated by cascades of elementary particles triggered by cosmic radiation. With highly sensitive cameras, Cherenkov telescopes take pictures of events which allow to identify gamma radiation to construct images of cosmic particle accelerators which emit this kind of gamma radiation.

The H.E.S.S. telescopes are operated by an international collaboration including a strong involvement of German universities and more than 30 institutions in 11 countries: Germany, France, United Kingdom, Namibia, South Africa, Ireland, Armenia, Poland, Australia, Austria and Sweden. H.E.S.S. is the only such system in the southern hemisphere and the only one with different reflector sizes. Therefore, H.E.S.S. ideally paves the way for the Cherenkov Telescope Array CTA, planned in international collaboration, which as from 2017 will be built with a total of about 100 Cherenkov telescopes of three sizes, distributed over two sites.

Contact 

PD Dr. Bernold Feuerstein

Press Officer

Max Planck Institute for Nuclear Physics, Heidelberg

Phone: +49 6221 516-281

 

Dr. Michael Panter

Max Planck Institute for Nuclear Physics, Heidelberg

Phone: +49 6221 516-273

 

Dr. Wilfried Domainko

Max Planck Institute for Nuclear Physics, Heidelberg

Phone: +49 6221 516-669

 

Dr. Felix Aharonian

Max Planck Institute for Nuclear Physics, Heidelberg

Phone: +49 6221 516-485
Fax: +49 6221 516-324

 

Prof. Dr. Christian Stegmann

H.E.S.S. spokesperson

Max Planck Institute for Nuclear Physics, Heidelberg

Phone: +49 33762 77-416

Dr. Bernold Feuerstein | Max-Planck-Institute

Further reports about: Cherenkov Cherenkov Telescope GeV MPIK Namibia Nuclear Physics Vela atmosphere construction telescopes

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>