Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle To Carry Experiment to International Space Station

27.08.2009
An experimental heat transfer system designed by researchers at Rensselaer Polytechnic Institute is scheduled to depart Earth aboard Space Shuttle Discovery. Astronauts will install the system into a laboratory of the International Space Station, where it will remain for up to three years.

The project, called the Constrained Vapor Bubble (CVB), could yield important fundamental insights into the nature of heat and mass transfer operations that involve a phase change – such as evaporation, condensation, and boiling – as well as engineering data that could lead to the development of new cooling systems for spacecraft and electronics devices.

The Space Shuttle Discovery is expected to lift off in the early hours of Wednesday, August 26. Rensselaer professors Peter Wayner and Joel Plawsky, who are leading the scientific investigation in collaboration with the National Aeronautics and Space Administration (NASA) Glenn Research Center, will be in Florida at the John F. Kennedy Space Center to watch the launch.

“After years of hard work to advance this project to its current state, I am very excited to see our Constrained Vapor Bubble make its way into space and onto the International Space Station,” said Wayner, a 1956 Rensselaer graduate and professor emeritus in Rensselaer’s Department of Chemical and Biological Engineering.

“The CVB experiment will provide a wealth of scientific and engineering data critical to the development of advanced materials, advanced devices, and reliable temperature and environmental control systems for extraterrestrial manned stations or interplanetary exploration missions,” said Plawsky, also a professor in the Department of Chemical and Biological Engineering.

The CVB is concerned with the three-phase contact line where vapor, liquid, and solid meet, generally during the process of evaporation or condensation. This phenomenon is responsible for a number of everyday occurrences, such as a coffee ring stain on the inside of a mug, or the tears that form on the inner surface of a glass of wine. Even though the material interactions at the three-phase contact line occur in a region where film thicknesses are tens of nanometers, they are still connected to a bulk fluid region and are affected by gravity.

To truly understand what occurs at the contact line, Plawsky said, gravity must be removed from the equation. Operating the CVB in the International Space Station, therefore, will allow them to test and observe how the three-phase contact line behaves in the near-weightlessness of microgravity.

The CVB is a small glass vial with squared corners, about 30 millimeters long, filled with vapor and liquid. This tiny, wickless heat pipe is then exposed to a heat source on one end and a cold sink on the other. A camera attached to the NASA Light Microscropy Module (LMM) will capture the action as the liquid evaporates at the hot end, the vapor travels to the opposite end of the pipe where it is cooled, and the newly condensed liquid flows back toward the heat source, via capillary forces, to repeat the cycle.

The phase changes result in interesting films forming all along the inside of the glass heat pipe. This will be the first time that scientists will have the opportunity to observe evaporating and condensing menisci – the curved liquid regions at the corners of the CVB – in a microgravity environment.

“Wickless heat pipes are self-contained, as they require no moving parts or machinery to pump fluids and heat,” Plawsky said. “These devices are ultra-reliable, can operate indefinitely as long as a heat source and cold sink are available, and so are perfect for space exploration purposes.”

Images of the experiment, representing contour maps of the liquid film thickness, will be sent to Wayner and Plawsky, who will analyze the images to determine the distribution of liquid along the axis of the heat pipe. They will use these measurements, along with temperature measurements, to calculate the rate of heat transfer and fluid flow throughout the device. Plawsky said he expects the heat pipe to perform about 10 times better in space than it does on Earth.

From a fundamental science perspective, the experiment should allow researchers to develop a better understanding of how to control phase change processes. This potential ten-fold improvement that comes from moving to a microgravity environment could lead to the development of new cooling and heat-transfer systems for spacecraft or satellites. The new pool of knowledge about heat transfer could also lead to improvement in terrestrial heat transfer devices, such as heat pipes for the cooling of computer chips, LEDs, and photovoltaic devices, implantable heat pipes used to help mitigate the effects of epilepsy, and larger-scale machines that boil liquids. Molecular self-assembly processes that rely on exploiting evaporation would also benefit from the data.

The first part of the experiment is set to be installed in the next few weeks in the International Space Station’s Destiny Module. To calibrate the machine, the very first tests will take place in late 2009 or early 2010 and will use a heat pipe that contains no liquid. Following the calibration, a second heat pipe containing the liquid pentane will be installed and tested. Another space flight targeted for July 2010 will carry four new heat pipe modules to the station, which will be tested incrementally over the next few years.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>