Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle To Carry Experiment to International Space Station

27.08.2009
An experimental heat transfer system designed by researchers at Rensselaer Polytechnic Institute is scheduled to depart Earth aboard Space Shuttle Discovery. Astronauts will install the system into a laboratory of the International Space Station, where it will remain for up to three years.

The project, called the Constrained Vapor Bubble (CVB), could yield important fundamental insights into the nature of heat and mass transfer operations that involve a phase change – such as evaporation, condensation, and boiling – as well as engineering data that could lead to the development of new cooling systems for spacecraft and electronics devices.

The Space Shuttle Discovery is expected to lift off in the early hours of Wednesday, August 26. Rensselaer professors Peter Wayner and Joel Plawsky, who are leading the scientific investigation in collaboration with the National Aeronautics and Space Administration (NASA) Glenn Research Center, will be in Florida at the John F. Kennedy Space Center to watch the launch.

“After years of hard work to advance this project to its current state, I am very excited to see our Constrained Vapor Bubble make its way into space and onto the International Space Station,” said Wayner, a 1956 Rensselaer graduate and professor emeritus in Rensselaer’s Department of Chemical and Biological Engineering.

“The CVB experiment will provide a wealth of scientific and engineering data critical to the development of advanced materials, advanced devices, and reliable temperature and environmental control systems for extraterrestrial manned stations or interplanetary exploration missions,” said Plawsky, also a professor in the Department of Chemical and Biological Engineering.

The CVB is concerned with the three-phase contact line where vapor, liquid, and solid meet, generally during the process of evaporation or condensation. This phenomenon is responsible for a number of everyday occurrences, such as a coffee ring stain on the inside of a mug, or the tears that form on the inner surface of a glass of wine. Even though the material interactions at the three-phase contact line occur in a region where film thicknesses are tens of nanometers, they are still connected to a bulk fluid region and are affected by gravity.

To truly understand what occurs at the contact line, Plawsky said, gravity must be removed from the equation. Operating the CVB in the International Space Station, therefore, will allow them to test and observe how the three-phase contact line behaves in the near-weightlessness of microgravity.

The CVB is a small glass vial with squared corners, about 30 millimeters long, filled with vapor and liquid. This tiny, wickless heat pipe is then exposed to a heat source on one end and a cold sink on the other. A camera attached to the NASA Light Microscropy Module (LMM) will capture the action as the liquid evaporates at the hot end, the vapor travels to the opposite end of the pipe where it is cooled, and the newly condensed liquid flows back toward the heat source, via capillary forces, to repeat the cycle.

The phase changes result in interesting films forming all along the inside of the glass heat pipe. This will be the first time that scientists will have the opportunity to observe evaporating and condensing menisci – the curved liquid regions at the corners of the CVB – in a microgravity environment.

“Wickless heat pipes are self-contained, as they require no moving parts or machinery to pump fluids and heat,” Plawsky said. “These devices are ultra-reliable, can operate indefinitely as long as a heat source and cold sink are available, and so are perfect for space exploration purposes.”

Images of the experiment, representing contour maps of the liquid film thickness, will be sent to Wayner and Plawsky, who will analyze the images to determine the distribution of liquid along the axis of the heat pipe. They will use these measurements, along with temperature measurements, to calculate the rate of heat transfer and fluid flow throughout the device. Plawsky said he expects the heat pipe to perform about 10 times better in space than it does on Earth.

From a fundamental science perspective, the experiment should allow researchers to develop a better understanding of how to control phase change processes. This potential ten-fold improvement that comes from moving to a microgravity environment could lead to the development of new cooling and heat-transfer systems for spacecraft or satellites. The new pool of knowledge about heat transfer could also lead to improvement in terrestrial heat transfer devices, such as heat pipes for the cooling of computer chips, LEDs, and photovoltaic devices, implantable heat pipes used to help mitigate the effects of epilepsy, and larger-scale machines that boil liquids. Molecular self-assembly processes that rely on exploiting evaporation would also benefit from the data.

The first part of the experiment is set to be installed in the next few weeks in the International Space Station’s Destiny Module. To calibrate the machine, the very first tests will take place in late 2009 or early 2010 and will use a heat pipe that contains no liquid. Following the calibration, a second heat pipe containing the liquid pentane will be installed and tested. Another space flight targeted for July 2010 will carry four new heat pipe modules to the station, which will be tested incrementally over the next few years.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>