Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle To Carry Experiment to International Space Station

27.08.2009
An experimental heat transfer system designed by researchers at Rensselaer Polytechnic Institute is scheduled to depart Earth aboard Space Shuttle Discovery. Astronauts will install the system into a laboratory of the International Space Station, where it will remain for up to three years.

The project, called the Constrained Vapor Bubble (CVB), could yield important fundamental insights into the nature of heat and mass transfer operations that involve a phase change – such as evaporation, condensation, and boiling – as well as engineering data that could lead to the development of new cooling systems for spacecraft and electronics devices.

The Space Shuttle Discovery is expected to lift off in the early hours of Wednesday, August 26. Rensselaer professors Peter Wayner and Joel Plawsky, who are leading the scientific investigation in collaboration with the National Aeronautics and Space Administration (NASA) Glenn Research Center, will be in Florida at the John F. Kennedy Space Center to watch the launch.

“After years of hard work to advance this project to its current state, I am very excited to see our Constrained Vapor Bubble make its way into space and onto the International Space Station,” said Wayner, a 1956 Rensselaer graduate and professor emeritus in Rensselaer’s Department of Chemical and Biological Engineering.

“The CVB experiment will provide a wealth of scientific and engineering data critical to the development of advanced materials, advanced devices, and reliable temperature and environmental control systems for extraterrestrial manned stations or interplanetary exploration missions,” said Plawsky, also a professor in the Department of Chemical and Biological Engineering.

The CVB is concerned with the three-phase contact line where vapor, liquid, and solid meet, generally during the process of evaporation or condensation. This phenomenon is responsible for a number of everyday occurrences, such as a coffee ring stain on the inside of a mug, or the tears that form on the inner surface of a glass of wine. Even though the material interactions at the three-phase contact line occur in a region where film thicknesses are tens of nanometers, they are still connected to a bulk fluid region and are affected by gravity.

To truly understand what occurs at the contact line, Plawsky said, gravity must be removed from the equation. Operating the CVB in the International Space Station, therefore, will allow them to test and observe how the three-phase contact line behaves in the near-weightlessness of microgravity.

The CVB is a small glass vial with squared corners, about 30 millimeters long, filled with vapor and liquid. This tiny, wickless heat pipe is then exposed to a heat source on one end and a cold sink on the other. A camera attached to the NASA Light Microscropy Module (LMM) will capture the action as the liquid evaporates at the hot end, the vapor travels to the opposite end of the pipe where it is cooled, and the newly condensed liquid flows back toward the heat source, via capillary forces, to repeat the cycle.

The phase changes result in interesting films forming all along the inside of the glass heat pipe. This will be the first time that scientists will have the opportunity to observe evaporating and condensing menisci – the curved liquid regions at the corners of the CVB – in a microgravity environment.

“Wickless heat pipes are self-contained, as they require no moving parts or machinery to pump fluids and heat,” Plawsky said. “These devices are ultra-reliable, can operate indefinitely as long as a heat source and cold sink are available, and so are perfect for space exploration purposes.”

Images of the experiment, representing contour maps of the liquid film thickness, will be sent to Wayner and Plawsky, who will analyze the images to determine the distribution of liquid along the axis of the heat pipe. They will use these measurements, along with temperature measurements, to calculate the rate of heat transfer and fluid flow throughout the device. Plawsky said he expects the heat pipe to perform about 10 times better in space than it does on Earth.

From a fundamental science perspective, the experiment should allow researchers to develop a better understanding of how to control phase change processes. This potential ten-fold improvement that comes from moving to a microgravity environment could lead to the development of new cooling and heat-transfer systems for spacecraft or satellites. The new pool of knowledge about heat transfer could also lead to improvement in terrestrial heat transfer devices, such as heat pipes for the cooling of computer chips, LEDs, and photovoltaic devices, implantable heat pipes used to help mitigate the effects of epilepsy, and larger-scale machines that boil liquids. Molecular self-assembly processes that rely on exploiting evaporation would also benefit from the data.

The first part of the experiment is set to be installed in the next few weeks in the International Space Station’s Destiny Module. To calibrate the machine, the very first tests will take place in late 2009 or early 2010 and will use a heat pipe that contains no liquid. Following the calibration, a second heat pipe containing the liquid pentane will be installed and tested. Another space flight targeted for July 2010 will carry four new heat pipe modules to the station, which will be tested incrementally over the next few years.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>