Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shortest-pulse X-ray beams could illuminate atomic, molecular interactions

Ultra-short X-ray beams produced at the University of Michigan could one day serve as more sensitive medical diagnostic tools, and they could work like strobe lights to allow researchers to observe chemical reactions that happen in quadrillionths of a second.

The researchers used the HERCULES high-intensity, table-top laser to create X-ray beams that rival those made in expensive and massive synchrotron particle accelerators. The National Synchrotron Light Source II, for example, under construction at Brookhaven National Laboratory, is slated to be a half-mile long. It's expected to cost more than $900 million.

Researchers at Imperial College London and Instituto Superior Téchnico Lisbon collaborated with U-M on this research, which is published online in Nature Physics and will appear in a forthcoming print edition.

A composite image of x-ray radiographs of a damsel fly imaged with the new tabletop ultrashort X-ray beam source built at the University of Michigan. Credit: Christopher McGuffy Click above image for higher resolution

"The development of accelerators and light sources has led to these very large systems and facilities that can only be accessed with a lot of preparation, by a few researchers," said Chris McGuffey, a doctoral student in the U-M Department of Nuclear Energy and Radiological Sciences. "We're bringing them to the university budget and university-scale laboratories. We expect this to open up more research possibilities."

Throughout history, X-ray machines have opened new frontiers in science, the researchers say. Earlier generations illuminated the structure of DNA and brought the first radiographs, which enabled imaging the human body. These newest developments are expected to allow researchers to measure and observe never-before-seen femtosecond atomic and molecular interactions.

"Our findings show that it is possible to use lasers to produce an X-ray source for potential medical applications which is much more compact than conventional ones," said Karl Krushelnick, associate director of the U-M Center for Ultrafast Optical Science.

"This X-ray source also has the unique property that it is emitted in pulses that have an ultra-short duration so that so it can be used in science to measure processes with unprecendented temporal resolution."

At 10 femtoseconds, or 10 quadrillionths of a second, the new beams are the shortest-pulse X-ray beams every created, McGuffey said.

Scientists and engineers have been trying to coax lasers to generate these bright, pointed X-ray beams for some time, McGuffey said.

"The field has been focusing a lot on making good electron beams so that we could use those to make X-ray beams. It turns out the electron beams are already plenty good enough. The X-rays have been there all along, but no one knew to look for them," McGuffey said.

Experiments were conducted at the U-M Center for Ultrafast Optical Science. The paper is titled "Bright spatially-coherent synchrotron X-rays from a table-top source." This research is funded by the National Science Foundation and the Department of Homeland Security.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments, numerous research centers and expansive entrepreneurial programs. The College plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world-class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.
Contact: Nicole Casal Moore
Phone: (734) 647-7087

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>