Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shortest flashes from ultra-hot matter

High-energy heavy ion collisions, which are studied at RHIC in Brookhaven and soon at the LHC in Geneva, can be a source of light flashes of a few yoctoseconds duration (a septillionth of a second, 10-24 s, ys) - the time that light needs to traverse an atomic nucleus.

This is shown in calculations of the light emission of so-called quark-gluon plasmas, which are created in such collisions for extremely short periods of time. Under certain conditions, double flashes are created, which could be utilized in the future to visualize the dynamics of atomic nuclei. (Physical Review Letters, 07.10.2009)

Collisions of heavy ions in a large accelerator facility (schematic). Under certain conditions, double light flashes of a few yoctoseconds duration can be emitted. MPI for Nuclear Physics

Temporal evolution of the quark-gluon plasma. Two ions (colored disks) collide along the beam collision axis (black double arrow). Image (a) shows the time immediately after the collision. The plasma (orange area) shines light (wavy arrows) in all directions, so that a first pulse in the direction of the detector (green semi-circle) is formed. (b) After some time, the inner dynamics of the plasma will cause light to be preferentially radiated perpendicular to the direction of flight of the ions. During this time no light is emitted into the direction of the detector which is placed close to the collision axis. In (c) the plasma radiates again in all directions, so that the second pulse is emitted in the direction of the detector. MPI for Nuclear Physics

For high-precision spectroscopy and structural studies of molecules, short light flashes with lowest possible wavelength, i.e., high photon energy, are required. Currently, x-ray flashes of some attosecond (a quintillionth of a second, 10-18 s) duration are accessible experimentally. Even shorter pulses with even higher photon energy would improve the temporal and spatial resolution, or would allow for the investigation of even smaller structures, such as for example atomic nuclei. In so-called pump-probe experiments, two light pulses of exactly controllable distance are utilized to observe rapid system changes in slow motion.

Calculations at the Max Planck Institute for Nuclear Physics have now shown that high-energy heavy ion collisions at large particle accelerators are suitable as light sources for the desired single and double pulses. This is due to the remarkable properties of quark-gluon plasmas.

The quark-gluon plasma is a state of matter of which the universe consisted right after the big bang. In this state, the temperatures are so high that even the constituents of atomic nuclei, the neutrons and protons, are split into their constituents, the quarks and gluons. Such a state of matter can nowadays be realized in modern colliders.

In the collision of heavy ions (i.e. atoms of heavy elements from which all electrons have been removed) at relativistic velocities, such a quark-gluon plasma is created for a few yoctoseconds at the size of a nucleus (Figure 1). Among many other particles, it also creates photons of a few GeV (billion electron volts) energy, so-called gamma radiation. These high-energy flashes of light are as short as the lifetime the quark-gluon plasma and consist of only a few photons.

The researchers have simulated the time-dependent expansion and internal dynamics of the quark-gluon plasma. It was found that at some intermediate time the photons are not emitted in all directions, but preferably perpendicular to the collision axis. A detector that is placed close to the collision axis will measure practically nothing during this period. Therefore, overall it detects a double pulse (Figure 2). By suitable choice of geometry of the setup and observing direction, the double pulses can in principle be selectively varied. Thus, they open up the possibility of future pump-probe experiments in the yoctosecond range at high energies. This could lead to a time-resolved observation of processes in atomic nuclei. Conversely, a detailed analysis of the gamma-ray flashes would allow to draw conclusions about the quark-gluon plasma.


PD Dr. Jörg Evers
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-177
Prof. Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: +49-6221-516-150

Dr. Bernold Feuerstein | Max-Planck-Gesellschaft
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>