Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short, on-chip light pulses will enable ultrafast data transfer within computers

25.11.2010
University of California - San Diego electrical engineers developed ultra compact, low power pulse compressor on a silicon chip

Electrical engineers generated short, powerful light pulses on a chip – an important step toward the optical interconnects that will likely replace the copper wires that carry information between chips within today's computers.

University of California, San Diego electrical engineers recently developed the first ultra compact, low power pulse compressor on a silicon chip to be described in the scientific literature. Details appeared online in the journal Nature Communications on November 16.

This miniaturized short pulse generator eliminates a roadblock on the way to optical interconnects for use in PCs, data centers, imaging applications and beyond. These optical interconnects, which will aggregate slower data channels with pulse compression, will have far higher data rates and generate less heat than the copper wires they will replace. Such aggregation devices will be critical for future optical connections within and between high speed digital electronic processors in future digital information systems.

"Our pulse compressor is implemented on a chip, so we can easily integrate it with computer processors," said Dawn Tan, the Ph.D. candidate in the Department of Electrical and Computer Engineering at UC San Diego Jacobs School of Engineering who led development of the pulse compressor.

"Next generation computer networks and computer architectures will likely replace copper interconnects with their optical counterparts, and these have to be complementary metal oxide semiconductor (CMOS) compatible. This is why we created our pulse compressor on silicon," said Tan, an electrical engineering graduate student researcher at UC San Diego, and part of the National Science Foundation funded Center for Integrated Access Networks.

The pulse compressor will also provide a cost effective method to derive short pulses for a variety of imaging technologies such as time resolved spectroscopy – which can be used to study lasers and electron behavior, and optical coherence tomography – which can capture biological tissues in three dimensions.

In addition to increasing data transfer rates, switching from copper wires to optical interconnects will reduce power consumption caused by heat dissipation, switching and transmission of electrical signals.

"At UC San Diego, we recognized the enabling power of nanophotonics for integration of information systems close to 20 years ago when we first started to use nano-scale lithographic tools to create new optical functionalities of materials and devices – and most importantly, to enable their integration with electronics on a chip. This Nature Communications paper demonstrates such integration of a few optical signal processing device functionalities on a CMOS compatible silicon-on-insulator material platform," said Yeshaiahu Fainman, a professor in the Department of Electrical and Computer Engineering in the UC San Diego Jacobs School of Engineering. Fainman acknowledged DARPA support in developing silicon photonics technologies which helped to enable this work, through programs such as Silicon-based Photonic Analog Signal Processing Engines with Reconfigurability (Si-PhASER) and Ultraperformance Nanophotonic Intrachip Communications (UNIC).

Pulse Compression for On-Chip Optical Interconnects

The compressed pulses are seven times shorter than the original -- the largest compression demonstrated to date on a chip.

Until now, pulse compression featuring such high compression factors was only possible using bulk optics or fiber-based systems, both of which are bulky and not practical for optical interconnects for computers and other electronics.

The combination of high compression and miniaturization are possible due to a nanoscale, light-guiding tool called an "integrated dispersive element" developed and designed primarily by electrical engineering Ph.D. candidate Dawn Tan.

The new dispersive element offers a much needed component to the on-chip nanophotonics tool kit.

The pulse compressor works in two steps. In step one, the spectrum of incoming laser light is broadened. For example, if green laser light were the input, the output would be red, green and blue laser light. In step two, the new integrated dispersive element developed by the electrical engineers manipulates the light so each spectrum in the pulse is travelling at the same speed. This speed synchronization is where pulse compression occurs.

Imagine the laser light as a series of cars. Looking down from above, the cars are initially in a long caravan. This is analogous to a long pulse of laser light. After stage one of pulse compression, the cars are no longer in a single line and they are moving at different speeds. Next, the cars move through the new dispersive grating where some cars are sped up and others are slowed down until each car is moving at the same speed. Viewed from above, the cars are all lined up and pass the finish line at the same moment.

This example illustrates how the on-chip pulse compressor transforms a long pulse of light into a spectrally broader and temporally shorter pulse of light. This temporally compressed pulse will enable multiplexing of data to achieve much higher data speeds.

"In communications, there is this technique called optical time division multiplexing or OTDM, where different signals are interleaved in time to produce a single data stream with higher data rates, on the order of terabytes per second. We've created a compression component that is essential for OTDM," said Tan.

The UC San Diego electrical engineers say they are the first to report a pulse compressor on a CMOS-compatible integrated platform that is strong enough for OTDM.

"In the future, this work will enable integrating multiple 'slow' bandwidth channels with pulse compression into a single ultra-high-bandwidth OTDM channel on a chip. Such aggregation devices will be critical for future inter- and intra-high speed digital electronic processors interconnections for numerous applications such as data centers, field-programmable gate arrays, high performance computing and more," said Fainman, holder of the Cymer Inc. Endowed Chair in Advanced Optical Technologies at the UC San Diego Jacobs School of Engineering and Deputy Director of the NSF-funded Center for Integrated Access Networks.

"Monolithic nonlinear pulse compressor on a silicon chip," by Dawn T.H. Tan, Pang C. Sun and Yeshaiahu Fainman from the Department of Electrical and Computer Engineering at the UC San Diego Jacobs School of Engineering. Published online by the journal Nature Communications on November 16, 2010.

This work was supported by the Defense Advanced Research Projects Agency, the National Science Foundation (NSF) through Electrical, Communications and Cyber Systems (ECCS) grants, the NSF Center for Integrated Access Networks ERC, the Cymer Corporation and the U.S. Army Research Office.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>