Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shooting for the Stars

Lindsay Lohan, Charlie Sheen? Oh, no. “Burned-out star” has a totally different meaning for Judi Provencal.

The University of Delaware astronomer has been busy manning the command center for a star watch of epic proportions, the latest observing run of the Whole Earth Telescope (WET). This global collaboration of observatories collects asteroseismic data—information on stellar waves that pass through hot stars in the cosmos like earthquakes pass through Earth—to determine what’s going on inside these exploding balls of hydrogen and helium gas.

Every day for the past six weeks, Provencal has encouraged faithful observers at 15 major telescopes in 11 countries, from Brazil to China, to focus their lenses on a handful of white dwarfs. These stars have used up all the fuel at their core and while they are still very hot, they are actually slowly cooling, a process that will take billions to trillions of years. Eventually, that’s what will happen to the sun, Provencal says.

The team’s primary target, GD358, is a white dwarf 120 light years away from Earth. Provencal has been studying it since she completed graduate school in 1994; her thesis adviser actually discovered the star.

“This star has changed a lot even since we started watching it several weeks ago,” notes Provencal, an assistant professor of physics and astronomy who directs the Delaware Asteroseismic Research Center (DARC). “It’s pulsating, or sloshing around, at new frequencies. Think of a pulsating star as a bell. If you have a bell and ring it, it makes a certain tone, but now suddenly it has a different tone. Well, what accounts for that? This is a challenge for the theorists.”

An astronomical relay team

Each participating observatory photographs the target star every 20 seconds throughout the night. As sunrise nears, the task is handed off to the next observatory where night has fallen, and so on. All of the images—hundreds of gigabytes of data—are transmitted daily to a computer in Provencal’s UD office.

The data is then transferred over the Internet to Mt. Cuba Astronomical Observatory in Greenville, Del., where it is reduced using software written by UD doctoral student James Dalessio. The observatory and the Crystal Trust are supporting the research.

“From all these images, we’ll pull out how many photons of light are coming from the star in a plot called a light curve,” Provencal says. The light curves are posted on the DARC website every day so the observers can see the data as the run proceeds.

“The star gets brighter and dimmer every 10 minutes because it is pulsating,” she explains. “The peaks in the light curve represent when the star is pulsating outward. From these data, we can determine the frequency of the pulsations, and theoretical physicists like my colleague Mike Montgomery at the University of Texas at Austin can tell us what is happening inside the star.”

After all of the number crunching and analysis, the research team will report their findings in a scientific paper. Generally, it is ready for publication about a year after an observing run, Provencal says.

One question Provencal hopes to answer is whether or not GD358 has a magnetic cycle, meaning that a magnetic field will tug on one side of the star and cause a shift in its rotation every so many years.

“We don’t understand why the sun has a magnetic field, although only a weak one,” she notes. “We’re trying to confirm that this star is similar to what the sun will become in about 4 billion years.”

One of WET’s secondary targets, a star called KIC10139564, more than 300 light years away (the equivalent of more than a quadrillion miles), also is being watched by NASA’s Kepler satellite. Yet no one has compared the satellite’s timings to see how good its clock is, Provencal says. The WET team’s data will help with the evaluation.

When WET started in 1980, having as many as eight telescopes on a run was an achievement, but under Provencal, more than double that number now participate. Her enthusiasm is infectious.

“We’re all interested in the science and get along really well,” she notes. “It’s also just plain fun.”

The team’s good humor and dedication continually impress Provencal.

She points out that a student from Poland with an injured foot is manning a telescope in Croatia, and that the robotic telescope at Mt. Lemmon in Arizona is being remotely operated by scientists in South Korea. And there’s still snow at Russia’s Peak Terskol Observatory at an elevation of 10,000 feet in the Caucasus Mountains. Aleksandr Sergeev, the observer there, has two cats to keep him company.

“He says the cats ‘sweep away the clouds,’” Provencal says, grinning.

When Provencal needs to clear her mind in the midst of such a long observing run, she goes horseback riding. Are her horses named “Star” or perhaps “Comet”?

“No,” Provencal says, “but I do have a cat named ‘Sparkles.’”

Tracey Bryant | Newswise Science News
Further information:

Further reports about: DARC Delaware Earth's magnetic field Observatory Provencal WET magnetic field white dwarf

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>