Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Off-The-Shelf Electronics Turn Up Gain on Spectroscopy

Whether the object of attention is a novel aspect of the universe or an enigmatic and distant colleague, listening is key to nearly any effort to seek understanding. And not just with your ears.

Spectroscopy, the study of how atoms absorb and emit electromagnetic radiation, is like listening, too. The technique is central to a range of physics experiments and can be thought of as an attempt to filter out useful information from what various sensors and detectors often first “hear” as undifferentiated electromagnetic noise.

Now, a new twist on spectroscopy, described in the American Institute of Physics' in journal Review of Scientific Instruments, allows for an unprecedented level of such filtering -- one that could transform everything from the search for extraterrestrial intelligence to super-sensitive spy gear to scan hotel rooms for hidden microphones or cameras.

The technique was demonstrated on the slice of the electromagnetic spectrum containing frequencies on which terrestrial radio stations broadcast music. Current spectroscopy techniques can take such radio signals and tell you, in effect, the average volume and pitch of each moment of the music. However, if a given moment is made up of several notes played simultaneously -- a chord, say -- that fact is more or less invisible.

Or rather, it was invisible before the recent work of doctoral student Sebastian Starosielec and professor Daniel Hägele, both at Germany’s Ruhr University Bochum. By stitching together a MHz-sampling card –- a radio-frequency version of a sound card -- and a multi-core graphics CPU, the two combed through a broad band of the radio spectrum in extra-fine detail. Their technical achievement, which determined in real time correlations among many thousands of pairs of frequencies, for the first time makes it easy to distinguish between a soloist and an ensemble based only on analysis of spectra.

Beyond the search for E.T. and illicit bugs, the technique could prove useful “for detecting anything that is not pure noise,” says Hägele. Other applications could include better measurements of various physical systems, particularly in atomic and solid state physics, and the possibility of better communication signal recovery to be used on and off the planet's surface.

Hägele gives the following example to illustrate the power of the the technology: Imagine a TV show was broadcast daily from Mars, and the signal was received, along with a vast amount of background noise, here on Earth. After a few days ”we would be able to reconstruct the show’s introduction, including the theme song and images, just from spectroscopic data,“ he says.

The article, "Two-dimensional higher order noise spectroscopy up to radio frequencies" by Sebastian Starosielec, Rachel Fainblat, Jörg Rudolph, and Daniel Hägele appears in the journal Review of Scientific Instruments. See:

This work is supported by the German Research Foundation and Germany’s Excellence Initiative.

Journalists may request a free PDF of this article by contacting

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See:
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

FUNDERS: German Research Foundation and Germany’s Excellence Initiative.

Jason Socrates Bardi | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>