Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharply focused on neurons, light controls a worm's behavior

19.01.2011
Scientists commandeer a freely moving organism's nervous system without wires or electrodes

Physicists and bioengineers have developed an optical instrument allowing them to control the behavior of a worm just by shining a tightly focused beam of light at individual neurons inside the organism.

The pioneering optogenetic research, by a team at Harvard University, the University of Pennsylvania, and the University of Massachusetts Medical School, is described this week in the journal Nature Methods. Their device is known as the CoLBeRT (Controlling Locomotion and Behavior in Real Time) system for optical control of freely moving animals, in this case the millimeter-long worm Caenorhabditis elegans.

"This optical instrument allows us to commandeer the nervous system of swimming or crawling nematodes using pulses of blue and green light -- no wires, no electrodes," says Aravinthan D.T. Samuel, a professor of physics and affiliate of Harvard's Center for Brain Science. "We can activate or inactivate individual neurons or muscle cells, essentially turning the worm into a virtual biorobot."

Samuel and colleagues chose to work with C. elegans, an organism often used in biological research, because of its optical transparency, its well-defined nervous system of exactly 302 neurons, and its ease of manipulation. They genetically modified the worms so their neurons express the light-activated proteins channelrhodopsin-2 and halorhodopsin.

In conjunction with high-precision micromirrors that can direct laser light to individual cells, the scientists were then able to stimulate -- using blue light -- or inhibit -- using green light -- behaviors such as locomotion and egg-laying.

"If you shine blue light at a particular neuron near the front end of the worm, it perceives that as being touched and will back away," says co-author Andrew M. Leifer, a Ph.D. student in Harvard's Department of Physics and Center for Brain Science. "Similarly, blue light shined at the tail end of the modified worm will prompt it to move forward."

The scientists were also able to use pulses of light to steer the worms left or right. By stimulating neurons associated with the worm's reproductive system, they were even able to rouse the animal into secreting an egg.

Key to the CoLBeRT system is a tracking microscope recording the motion of a swimming or crawling worm, paired with image processing software that can quickly estimate the location of individual neurons and instruct a digital micromirror device to illuminate targeted cells. Because cells in an unrestrained worm represent a rapidly moving target, the system can capture 50 frames per second and attain spatial resolution of just 30 microns.

"This development should have profound consequences in systems neuroscience as a new tool to probe nervous system activity and behavior, as well as in bioengineering and biorobotics," Samuel says. "Our laboratory has been pioneering new optical methods to study the nervous system, and this is the latest, and perhaps our greatest, invention."

Leifer and Samuel's co-authors on the Nature Methods paper are Christopher Fang-Yen of the University of Pennsylvania, Marc Gershow of Harvard, and Mark J. Alkema of the University of Massachusetts Medical School. Their work was supported by the Dana Foundation, the National Science Foundation, and the National Institutes of Health.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>