Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpest views of Betelgeuse reveal how supergiant stars lose mass

31.07.2009
Unveiling the true face of a behemoth

Using different state-of-the-art techniques on ESO's Very Large Telescope, two independent teams of astronomers have obtained the sharpest ever views of the supergiant star Betelgeuse. They show that the star has a vast plume of gas almost as large as our Solar System and a gigantic bubble boiling on its surface. These discoveries provide important clues to help explain how these mammoths shed material at such a tremendous rate.

Betelgeuse — the second brightest star in the constellation of Orion (the Hunter) — is a red supergiant, one of the biggest stars known, and almost 1000 times larger than our Sun [1]. It is also one of the most luminous stars known, emitting more light than 100 000 Suns. Such extreme properties foretell the demise of a short-lived stellar king. With an age of only a few million years, Betelgeuse is already nearing the end of its life and is soon doomed to explode as a supernova. When it does, the supernova should be seen easily from Earth, even in broad daylight.

Red supergiants still hold several unsolved mysteries. One of them is just how these behemoths shed such tremendous quantities of material — about the mass of the Sun — in only 10 000 years. Two teams of astronomers have used ESO’s Very Large Telescope (VLT) and the most advanced technologies to take a closer look at the gigantic star. Their combined work suggests that an answer to the long-open mass-loss question may well be at hand.

The first team used the adaptive optics instrument, NACO, combined with a so-called “lucky imaging” technique, to obtain the sharpest ever image of Betelgeuse, even with Earth’s turbulent, image-distorting atmosphere in the way. With lucky imaging, only the very sharpest exposures are chosen and then combined to form an image much sharper than a single, longer exposure would be.

The resulting NACO images almost reach the theoretical limit of sharpness attainable for an 8-metre telescope. The resolution is as fine as 37 milliarcseconds, which is roughly the size of a tennis ball on the International Space Station (ISS), as seen from the ground.

“Thanks to these outstanding images, we have detected a large plume of gas extending into space from the surface of Betelgeuse,” says Pierre Kervella from the Paris Observatory, who led the team. The plume extends to at least six times the diameter of the star, corresponding to the distance between the Sun and Neptune.

“This is a clear indication that the whole outer shell of the star is not shedding matter evenly in all directions,” adds Kervella. Two mechanisms could explain this asymmetry. One assumes that the mass loss occurs above the polar caps of the giant star, possibly because of its rotation. The other possibility is that such a plume is generated above large-scale gas motions inside the star, known as convection — similar to the circulation of water heated in a pot.

To arrive at a solution, astronomers needed to probe the behemoth in still finer detail. To do this Keiichi Ohnaka from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and his colleagues used interferometry. With the AMBER instrument on ESO’s Very Large Telescope Interferometer, which combines the light from three 1.8-metre Auxiliary Telescopes of the VLT, the astronomers obtained observations as sharp as those of a giant, virtual 48-metre telescope. With such superb resolution, the astronomers were able to detect indirectly details four times finer still than the amazing NACO images had already allowed (in other words, the size of a marble on the ISS, as seen from the ground).

“Our AMBER observations are the sharpest observations of any kind ever made of Betelgeuse. Moreover, we detected how the gas is moving in different areas of Betelgeuse’s surface ¯ the first time this has been done for a star other than the Sun”, says Ohnaka.

The AMBER observations revealed that the gas in Betelgeuse's atmosphere is moving vigorously up and down, and that these bubbles are as large as the supergiant star itself. Their unrivalled observations have led the astronomers to propose that these large-scale gas motions roiling under Betelgeuse’s red surface are behind the ejection of the massive plume into space.

Note
[1] If Betelgeuse were at the centre of our Solar System it would extend out almost to the orbit of Jupiter, engulfing Mercury, Venus, Earth, Mars and the main asteroid belt.
More Information
This research was presented in two papers to appear in Astronomy and Astrophysics:

The close circumstellar environment of Betelgeuse: Adaptive optics spectro-imaging in the near-IR with VLT/NACO, by Pierre Kervella et al., and Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER, by Keiichi Ohnaka et al.

The teams are composed of P. Kervella, G. Perrin, S. Lacour, and X. Haubois (LESIA, Observatoire de Paris, France), T. Verhoelst (K. U. Leuven, Belgium), S. T. Ridgway (National Optical Astronomy Observatories, USA), and J. Cami (University of Western Ontario, Canada), and of K. Ohnaka, K.-H. Hofmann, T. Driebe, F. Millour, D. Schertl, and G. Weigelt (Max-Planck-Institute for Radio Astronomy, Bonn, Germany), M. Benisty (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy), A. Chelli (LAOG, Grenoble, France), R. Petrov and F. Vakili (Lab. H. Fizeau, OCA, Nice, France), and Ph. Stee (Lab. H. Fizeau, OCA, Grasse, France).
ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.
Links
Science papers: Kervella, P. et al. and Ohnaka, K. et al.
Contacts
Pierre Kervella
Observatoire de Paris-Meudon, France
E-mail: Pierre.Kervella (at) obspm.fr
Phone: +33 1 45 07 79 66
Keiichi Ohnaka
Max-Planck Institute for Radio Astronomy
Bonn, Germany
E-mail: kohnaka (at) mpifr-bonn.mpg.de
Phone: +49 228 525 353
Olivier Hainaut
ESO Science Liaison
Garching, Germany
E-mail: ohainaut (at) eso.org
Phone: +49 89 3200 6752

Olivier Hainaut | EurekAlert!
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2009/pr-27-09.html

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>