Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpest-ever Ground-based Images of Pluto and Charon: Proves a Powerful Tool for Exoplanet Discoveries

27.09.2012
Despite being infamously demoted from its status as a major planet, Pluto (and its largest companion Charon) recently posed as a surrogate extrasolar planetary system to help astronomers produce exceptionally high-resolution images with the Gemini North 8-meter telescope.

Using a method called reconstructive speckle imaging, the researchers took the sharpest ground-based snapshots ever obtained of Pluto and Charon in visible light, which hint at the exoplanet verification power of a large state-of-the-art telescope when combined with speckle imaging techniques. The data also verified and refined previous orbital characteristics for Pluto and Charon while revealing the pair’s precise diameters.


Speckle image reconstruction of Pluto and Charon obtained in visible light at 692 nanometers (red) with the Gemini North 8-meter telescope using the Differential Speckle Survey Instrument (DSSI). Resolution of the image is about 20 milliarcseconds rms (root mean square). This is the first speckle reconstructed image for Pluto and Charon from which astronomers obtained not only the separation and position angle for Charon, but also the diameters of the two bodies. North is up, east is to the left, and the image section shown here is 1.39 arcseconds across. Credit: Gemini Observatory/NSF/NASA/AURA

“The Pluto-Charon result is of timely interest to those of us wanting to understand the orbital dynamics of this pair for the 2015 encounter by NASA's New Horizons spacecraft,” said Steve Howell of the NASA Ames Research Center, who led the study. In addition, Howell notes that NASA’s Kepler mission, which has already proven a powerful exoplanet discovery tool, will benefit greatly from this technique.

Kepler identifies planet candidates by repeatedly measuring the change in brightness of more than 150,000 stars to detect when a planet passes in front of, or affects the brightness of, its host star. Speckle imaging with the Gemini telescope will provide Kepler's follow-up program with a doubling in its ability to resolve objects and validate Earth-like planets. It also offers a 3- to 4-magnitude sensitivity increase for the sources observed by the team. That’s about a 50-fold increase in sensitivity in the observations Howell and his team made at Gemini. “This is an enormous gain in the effort underway to confirm small Earth-size planets,” Howell added.

To institute this effort Howell and his team –– which included Elliott Horch (Southern Connecticut State University), Mark Everett (National Optical Astronomy Observatory), and David Ciardi (NASA Exoplanet Science Institute/Caltech) –– temporarily installed a camera, called the Differential Speckle Survey Instrument (DSSI), among the suite of instruments mounted on the Gemini telescope.

"This was a fantastic opportunity to bring DSSI to Gemini North this past July," said Horch. "In just a little over half an hour of Pluto observations, collecting light with the large Gemini mirror, we obtained the best resolution ever with the DSSI instrument –– it was stunning!"

The resolution obtained in the observations, about 20 milliarcseconds, easily corresponds to separating a pair of automobile headlights in Providence, Rhode Island, from San Francisco, California. To achieve this level of definition, Gemini obtained a large number of very quick “snapshots” of Pluto and Charon. The researchers then reconstructed them into a single image after subtracting the blurring effects and ever-changing speckled artifacts caused by turbulence in the atmosphere and other optical aberrations. With enough snapshots (each image was exposed for only 60 milliseconds or about 1/20 of a second) only the light from the actual objects remains constant, and the artifacts reveal their transient nature, eventually canceling each other out.

DSSI was built at SCSU between 2007-2008 as a part of a United States National Science Foundation Astronomical Instrumentation grant and mounted on the Gemini North telescope for a limited observing run. The instrument is likely to return to Gemini North for observations in mid-2013 for general user programs from across the international Gemini partnership. Any such arrangement will be announced along with the call for proposals for Semester 13B, in February 2013.

This work was funded in part by the National Science Foundation and NASA’s Kepler discovery mission and will be published in the journal Publications of the Astronomical Society of the Pacific in October 2012.

Background History of DSSI
The Differential Speckle Survey Instrument (DSSI) was built at Southern Connecticut State University (SCSU) between 2007-2008 as a part of a NSF Astronomical Instrumentation grant on which Elliott Horch was the principal investigator. Together with student collaborators, Horch designed and assembled the instrument, and wrote the instrument control software. In 2008 DSSI was shipped to the WIYN Observatory at Kitt Peak, where it has been used since September 2008 for both Kepler follow-up observations and a NSF-funded project to study binary stars discovered by Hipparcos. In late 2009, the detectors for the instrument were upgraded from two low-noise CCDs to two electron-multiplying CCDs, one purchased by the Kepler Science Office and the other by SCSU. DSSI is the world's first two-channel speckle imaging instrument.
Science Contacts:
Steven Howell
NASA Ames Research Center
Moffett Field, CA
Desk: 605-604-4238
Cell: 520-461-6925
Steve.b.howell"at"nasa.gov
Elliott Horch
Southern Connecticut State University
New Haven, CT
Phone: 203-392-6393
Horche2"at"southernct.edu
Media Contact:
Peter Michaud
Public Information and Outreach Manager
Gemini Observatory, Hilo, Hawai'i
Desk: (808) 974-2510
Cell: (808) 936-6643
pmichaud"at"gemini.edu

Peter Michaud | EurekAlert!
Further information:
http://www.gemini.edu/node/11893

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>