Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing triple: New 3-D model could solve supernova mystery

22.07.2015

How massive stars explode remains a mystery; However, recent work led by Michigan State University may bring some answers to this astronomical question

Giant stars die a violent death. After a life of several million years, they collapse into themselves and then explode in what is known as a supernova.


The final seconds in the life of a very massive star are captured in 3-D by an MSU-led team of scientists. This is the first time a 3-D model of such a star has been developed and could lead to a better understanding of why these stars blow up as supernovae.

Photo courtesy of S.M. Couch

How these stars explode remains a mystery. However, recent work led by Michigan State University may bring some answers to this astronomical question.

In a paper published in the Astrophysical Journal Letters, the team details how it developed a three-dimensional model of a giant star's last moments.

"This is something that has never been done before," said Sean Couch, an MSU assistant professor of physics and astronomy and lead author of the paper. "This is a significant step toward understanding how these stars blow up."

The ongoing problem is that, until now, researchers have only been able to do this in one-dimension. Nature, of course, is three-dimensional.

"We were always using one-D models that don't actually occur in nature," Couch said.

What allowed the researchers to break the 3-D barrier is new developments in technology. "There are new resources, both hardware and software, that allow this to now be feasible," Couch said.

Until now, computer models did not match what was observed in the real world.

"We just couldn't get the darn things to blow up," he said. "And that was a problem because that's what happens in nature. It was telling us that we were missing something."

The other problem the 3-D model addresses is the actual shape of the star. Older computer models yielded stars that were perfectly spherical. However, that is not what real stars look like, and this new work shows that the messy details matter for understanding supernova explosions.

Millions of years of nuclear burning in massive stars results in central cores made of inert iron. This iron cannot be used by the star as fuel. Eventually, without any fuel source, the star collapses from its own tremendous gravitational pull.

"This is what we see in our simulation process," Couch said. "The iron core building up to where it can no longer support itself and down it comes."

He said the development of the 3-D model is an early stop in pinning down the reasons why stars explode, but could completely change the way scientists approach the supernova mechanism.

###

Other members of the research team are Emmanouil Chatzopoulos of the University of Chicago; W. David Arnett from the University of Arizona; and F.X. Timmes from Arizona State University.

Couch and Timmes also are affiliated with the Joint Institute for Nuclear Astrophysics, a National Science Foundation-funded center partly housed at MSU which studies how the elements found throughout the universe first came to be.

Parts of this work also were carried out at the California Institute of Technology prior to Couch joining MSU.

Tom Oswald | EurekAlert!

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>