Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing triple: New 3-D model could solve supernova mystery

22.07.2015

How massive stars explode remains a mystery; However, recent work led by Michigan State University may bring some answers to this astronomical question

Giant stars die a violent death. After a life of several million years, they collapse into themselves and then explode in what is known as a supernova.


The final seconds in the life of a very massive star are captured in 3-D by an MSU-led team of scientists. This is the first time a 3-D model of such a star has been developed and could lead to a better understanding of why these stars blow up as supernovae.

Photo courtesy of S.M. Couch

How these stars explode remains a mystery. However, recent work led by Michigan State University may bring some answers to this astronomical question.

In a paper published in the Astrophysical Journal Letters, the team details how it developed a three-dimensional model of a giant star's last moments.

"This is something that has never been done before," said Sean Couch, an MSU assistant professor of physics and astronomy and lead author of the paper. "This is a significant step toward understanding how these stars blow up."

The ongoing problem is that, until now, researchers have only been able to do this in one-dimension. Nature, of course, is three-dimensional.

"We were always using one-D models that don't actually occur in nature," Couch said.

What allowed the researchers to break the 3-D barrier is new developments in technology. "There are new resources, both hardware and software, that allow this to now be feasible," Couch said.

Until now, computer models did not match what was observed in the real world.

"We just couldn't get the darn things to blow up," he said. "And that was a problem because that's what happens in nature. It was telling us that we were missing something."

The other problem the 3-D model addresses is the actual shape of the star. Older computer models yielded stars that were perfectly spherical. However, that is not what real stars look like, and this new work shows that the messy details matter for understanding supernova explosions.

Millions of years of nuclear burning in massive stars results in central cores made of inert iron. This iron cannot be used by the star as fuel. Eventually, without any fuel source, the star collapses from its own tremendous gravitational pull.

"This is what we see in our simulation process," Couch said. "The iron core building up to where it can no longer support itself and down it comes."

He said the development of the 3-D model is an early stop in pinning down the reasons why stars explode, but could completely change the way scientists approach the supernova mechanism.

###

Other members of the research team are Emmanouil Chatzopoulos of the University of Chicago; W. David Arnett from the University of Arizona; and F.X. Timmes from Arizona State University.

Couch and Timmes also are affiliated with the Joint Institute for Nuclear Astrophysics, a National Science Foundation-funded center partly housed at MSU which studies how the elements found throughout the universe first came to be.

Parts of this work also were carried out at the California Institute of Technology prior to Couch joining MSU.

Tom Oswald | EurekAlert!

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>