Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing triple: New 3-D model could solve supernova mystery

22.07.2015

How massive stars explode remains a mystery; However, recent work led by Michigan State University may bring some answers to this astronomical question

Giant stars die a violent death. After a life of several million years, they collapse into themselves and then explode in what is known as a supernova.


The final seconds in the life of a very massive star are captured in 3-D by an MSU-led team of scientists. This is the first time a 3-D model of such a star has been developed and could lead to a better understanding of why these stars blow up as supernovae.

Photo courtesy of S.M. Couch

How these stars explode remains a mystery. However, recent work led by Michigan State University may bring some answers to this astronomical question.

In a paper published in the Astrophysical Journal Letters, the team details how it developed a three-dimensional model of a giant star's last moments.

"This is something that has never been done before," said Sean Couch, an MSU assistant professor of physics and astronomy and lead author of the paper. "This is a significant step toward understanding how these stars blow up."

The ongoing problem is that, until now, researchers have only been able to do this in one-dimension. Nature, of course, is three-dimensional.

"We were always using one-D models that don't actually occur in nature," Couch said.

What allowed the researchers to break the 3-D barrier is new developments in technology. "There are new resources, both hardware and software, that allow this to now be feasible," Couch said.

Until now, computer models did not match what was observed in the real world.

"We just couldn't get the darn things to blow up," he said. "And that was a problem because that's what happens in nature. It was telling us that we were missing something."

The other problem the 3-D model addresses is the actual shape of the star. Older computer models yielded stars that were perfectly spherical. However, that is not what real stars look like, and this new work shows that the messy details matter for understanding supernova explosions.

Millions of years of nuclear burning in massive stars results in central cores made of inert iron. This iron cannot be used by the star as fuel. Eventually, without any fuel source, the star collapses from its own tremendous gravitational pull.

"This is what we see in our simulation process," Couch said. "The iron core building up to where it can no longer support itself and down it comes."

He said the development of the 3-D model is an early stop in pinning down the reasons why stars explode, but could completely change the way scientists approach the supernova mechanism.

###

Other members of the research team are Emmanouil Chatzopoulos of the University of Chicago; W. David Arnett from the University of Arizona; and F.X. Timmes from Arizona State University.

Couch and Timmes also are affiliated with the Joint Institute for Nuclear Astrophysics, a National Science Foundation-funded center partly housed at MSU which studies how the elements found throughout the universe first came to be.

Parts of this work also were carried out at the California Institute of Technology prior to Couch joining MSU.

Tom Oswald | EurekAlert!

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>