Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing double: NASA missions measure solar flare from 2 spots in space

20.04.2016

Solar flares are intense bursts of light from the sun. They are created when complicated magnetic fields suddenly and explosively rearrange themselves, converting magnetic energy into light through a process called magnetic reconnection - at least, that's the theory, because the signatures of this process are hard to detect. But during a December 2013 solar flare, three solar observatories captured the most comprehensive observations of an electromagnetic phenomenon called a current sheet, strengthening the evidence that this understanding of solar flares is correct.

These eruptions on the sun eject radiation in all directions. The strongest solar flares can impact the ionized part of Earth's atmosphere - the ionosphere - and interfere with our communications systems, like radio and GPS, and also disrupt onboard satellite electronics. Additionally, high-energy particles - including electrons, protons and heavier ions - are accelerated by solar flares.


During a December 2013 solar flare, three NASA missions observed a current sheet form -- a strong clue for explaining what initiates the flares. This animation shows four views of the flare from NASA's Solar Dynamics Observatory, NASA's Solar and Terrestrial Relations Observatory, and JAXA/NASA's Hinode, allowing scientists to make unprecedented measurements of its characteristics. The current sheet is a long, thin structure, especially visible in the views on the left. Those two animations depict light emitted by material with higher temperatures, so they better show the extremely hot current sheet.

Credits: NASA/JAXA/SDO/STEREO/Hinode (courtesy Zhu, et al.)

Unlike other space weather events, solar flares travel at the speed of light, meaning we get no warning that they're coming. So scientists want to pin down the processes that create solar flares - and even some day predict them before our communications can be interrupted.

"The existence of a current sheet is crucial in all our models of solar flares," said James McAteer, an astrophysicist at New Mexico State University in Las Cruces and an author of a study on the December 2013 event, published on April 19, 2016, in the Astrophysical Journal Letters. "So these observations make us much more comfortable that our models are good."

And better models lead to better forecasting, said Michael Kirk, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. "These complementary observations allowed unprecedented measurements of magnetic reconnection in three dimensions," Kirk said. "This will help refine how we model and predict the evolution of solar flares."

Looking at Current Sheets

A current sheet is a very fast, very flat flow of electrically-charged material, defined in part by its extreme thinness compared to its length and width. Current sheets form when two oppositely-aligned magnetic fields come in close contact, creating very high magnetic pressure.

Electric current flowing through this high-pressure area is squeezed, compressing it down to a very fast and thin sheet. It's a bit like putting your thumb over the opening of a water hose - the water, or, in this case, the electrical current, is forced out of a tiny opening much, much faster. This configuration of magnetic fields is unstable, meaning that the same conditions that create current sheets are also ripe for magnetic reconnection.

"Magnetic reconnection happens at the interface of oppositely-aligned magnetic fields," said Chunming Zhu, a space scientist at New Mexico State University and lead author on the study. "The magnetic fields break and reconnect, leading to a transformation of the magnetic energy into heat and light, producing a solar flare."

Because current sheets are so closely associated with magnetic reconnection, observing a current sheet in such detail backs up the idea that magnetic reconnection is the force behind solar flares.

"You have to be watching at the right time, at the right angle, with the right instruments to see a current sheet," said McAteer. "It's hard to get all those ducks in a row."

This isn't the first time scientists have observed a current sheet during a solar flare, but this study is unique in that several measurements of the current sheet - such as speed, temperature, density and size - were observed from more than one angle or derived from more than method.

This multi-faceted view of the December 2013 flare was made possible by the wealth of instruments aboard three solar-watching missions: NASA's Solar Dynamics Observatory, or SDO, NASA's Solar and Terrestrial Relations Observatory, or STEREO - which has a unique viewing angle on the far side of the sun - and Hinode, which is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe led by the Japan Aerospace Exploration Agency.

Even when scientists think they've spotted something that might be a current sheet in solar data, they can't be certain without ticking off a long list of attributes. Since this current sheet was so well-observed, the team was able to confirm that its temperature, density, and size over the course of the event were consistent with a current sheet.

As scientists work up a better picture of how current sheets and magnetic reconnection lead to solar eruptions, they'll be able to produce better models of the complex physics happening there - providing us with ever more insight on how our closest star affects space all around us.

###

This research was funded by a CAREER grant from the National Science Foundation awarded to James McAteer.

Karen Fox | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>