Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing double: NASA missions measure solar flare from 2 spots in space


Solar flares are intense bursts of light from the sun. They are created when complicated magnetic fields suddenly and explosively rearrange themselves, converting magnetic energy into light through a process called magnetic reconnection - at least, that's the theory, because the signatures of this process are hard to detect. But during a December 2013 solar flare, three solar observatories captured the most comprehensive observations of an electromagnetic phenomenon called a current sheet, strengthening the evidence that this understanding of solar flares is correct.

These eruptions on the sun eject radiation in all directions. The strongest solar flares can impact the ionized part of Earth's atmosphere - the ionosphere - and interfere with our communications systems, like radio and GPS, and also disrupt onboard satellite electronics. Additionally, high-energy particles - including electrons, protons and heavier ions - are accelerated by solar flares.

During a December 2013 solar flare, three NASA missions observed a current sheet form -- a strong clue for explaining what initiates the flares. This animation shows four views of the flare from NASA's Solar Dynamics Observatory, NASA's Solar and Terrestrial Relations Observatory, and JAXA/NASA's Hinode, allowing scientists to make unprecedented measurements of its characteristics. The current sheet is a long, thin structure, especially visible in the views on the left. Those two animations depict light emitted by material with higher temperatures, so they better show the extremely hot current sheet.

Credits: NASA/JAXA/SDO/STEREO/Hinode (courtesy Zhu, et al.)

Unlike other space weather events, solar flares travel at the speed of light, meaning we get no warning that they're coming. So scientists want to pin down the processes that create solar flares - and even some day predict them before our communications can be interrupted.

"The existence of a current sheet is crucial in all our models of solar flares," said James McAteer, an astrophysicist at New Mexico State University in Las Cruces and an author of a study on the December 2013 event, published on April 19, 2016, in the Astrophysical Journal Letters. "So these observations make us much more comfortable that our models are good."

And better models lead to better forecasting, said Michael Kirk, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. "These complementary observations allowed unprecedented measurements of magnetic reconnection in three dimensions," Kirk said. "This will help refine how we model and predict the evolution of solar flares."

Looking at Current Sheets

A current sheet is a very fast, very flat flow of electrically-charged material, defined in part by its extreme thinness compared to its length and width. Current sheets form when two oppositely-aligned magnetic fields come in close contact, creating very high magnetic pressure.

Electric current flowing through this high-pressure area is squeezed, compressing it down to a very fast and thin sheet. It's a bit like putting your thumb over the opening of a water hose - the water, or, in this case, the electrical current, is forced out of a tiny opening much, much faster. This configuration of magnetic fields is unstable, meaning that the same conditions that create current sheets are also ripe for magnetic reconnection.

"Magnetic reconnection happens at the interface of oppositely-aligned magnetic fields," said Chunming Zhu, a space scientist at New Mexico State University and lead author on the study. "The magnetic fields break and reconnect, leading to a transformation of the magnetic energy into heat and light, producing a solar flare."

Because current sheets are so closely associated with magnetic reconnection, observing a current sheet in such detail backs up the idea that magnetic reconnection is the force behind solar flares.

"You have to be watching at the right time, at the right angle, with the right instruments to see a current sheet," said McAteer. "It's hard to get all those ducks in a row."

This isn't the first time scientists have observed a current sheet during a solar flare, but this study is unique in that several measurements of the current sheet - such as speed, temperature, density and size - were observed from more than one angle or derived from more than method.

This multi-faceted view of the December 2013 flare was made possible by the wealth of instruments aboard three solar-watching missions: NASA's Solar Dynamics Observatory, or SDO, NASA's Solar and Terrestrial Relations Observatory, or STEREO - which has a unique viewing angle on the far side of the sun - and Hinode, which is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe led by the Japan Aerospace Exploration Agency.

Even when scientists think they've spotted something that might be a current sheet in solar data, they can't be certain without ticking off a long list of attributes. Since this current sheet was so well-observed, the team was able to confirm that its temperature, density, and size over the course of the event were consistent with a current sheet.

As scientists work up a better picture of how current sheets and magnetic reconnection lead to solar eruptions, they'll be able to produce better models of the complex physics happening there - providing us with ever more insight on how our closest star affects space all around us.


This research was funded by a CAREER grant from the National Science Foundation awarded to James McAteer.

Karen Fox | EurekAlert!

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>