Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets from within planets pave way for cleaner energy

23.10.2008
Research that has provided a deeper understanding into the centre of planets could also provide the way forward in the world’s quest for cleaner energy.

An international team of scientists, led by the University of Oxford, working alongside researchers at the Science and Technology Facilities Council’s (STFC) Central Laser Facility, has gained a deeper insight into the hot, dense matter found at the centre of planets and as a result, has provided further understanding into controlled thermonuclear fusion. The full paper on this research has been published, 19 October, in the scientific journal, Nature Physics.

This deeper insight into planets could extend our comprehension of fusion energy – the same energy that powers the sun, and laser driven fusion as a future energy source. Fusion energy is widely considered an attractive, environmentally clean power source using sea water as its principal source of fuel, where no greenhouse gasses or long lived radioactive waste materials are produced.

Using STFC’s Vulcan laser, the team has used an intense beam of X-rays to successfully identify and reproduce conditions found inside the core of planets, where solid matter has a temperature in excess of 50,000 degrees. The understanding of the complex state of matter in these extreme conditions represents one of the grand challenges of contemporary physics. The results from the Vulcan experiments are intended to improve our models of Jupiter and Saturn and to obtain better constraints on their composition and the age of the Solar System.

Using inelastic X-ray scattering measurements on a compressed lithium sample, it was shown how hot, dense matter states can be diagnosed and structural properties can be obtained. The thermodynamic properties – temperature, density and ionisation state, were all measured using a combination of non-invasive, high accuracy, X-ray diagnostics and advanced numerical simulations. The experiment has revealed that the matter at the centre of planets is in a state that is intermediate between a solid and a gas over lengths larger than 0.3 nanometres. To put this into context, 1 nanometre equates to less than 1/10000th of a human hair! Results showed that extreme matter behaves as a charged liquid, but at smaller distances it acts more like a gas.

Dr Gianluca Gregori, of the University of Oxford and STFC’s Central Laser Facility said: “The study of warm dense matter states, in this experiment on lithium, shows practical applications for controlled thermonuclear fusion, and it also represents significant understanding relating to astrophysical environments found in the core of planets and the crusts of old stars. This research therefore makes it not only possible to formulate more accurate models of planetary dynamics, but also to extend our comprehension of controlled thermonuclear fusion where such states of matter, that is liquid and gas, must be crossed to initiate fusion reactions. This work expands our knowledge of complex systems of particles where the laws that regulate their motion are both classical and quantum mechanical. ”

Professor Mike Dunne, Director of the Central Laser Facility at STFC said: “Using high power lasers to find solutions to astrophysical issues is an area that has been highly active at STFC for some time. We are very excited that the Vulcan laser has contributed to such a significant piece of research. The use of extremely powerful lasers is proving to be a particularly effective approach to delivering long-term solutions for carbon-free energy.”

Wendy Taylor | alfa
Further information:
http://www.stfc.ac.uk
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1103.html

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>