Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets from within planets pave way for cleaner energy

23.10.2008
Research that has provided a deeper understanding into the centre of planets could also provide the way forward in the world’s quest for cleaner energy.

An international team of scientists, led by the University of Oxford, working alongside researchers at the Science and Technology Facilities Council’s (STFC) Central Laser Facility, has gained a deeper insight into the hot, dense matter found at the centre of planets and as a result, has provided further understanding into controlled thermonuclear fusion. The full paper on this research has been published, 19 October, in the scientific journal, Nature Physics.

This deeper insight into planets could extend our comprehension of fusion energy – the same energy that powers the sun, and laser driven fusion as a future energy source. Fusion energy is widely considered an attractive, environmentally clean power source using sea water as its principal source of fuel, where no greenhouse gasses or long lived radioactive waste materials are produced.

Using STFC’s Vulcan laser, the team has used an intense beam of X-rays to successfully identify and reproduce conditions found inside the core of planets, where solid matter has a temperature in excess of 50,000 degrees. The understanding of the complex state of matter in these extreme conditions represents one of the grand challenges of contemporary physics. The results from the Vulcan experiments are intended to improve our models of Jupiter and Saturn and to obtain better constraints on their composition and the age of the Solar System.

Using inelastic X-ray scattering measurements on a compressed lithium sample, it was shown how hot, dense matter states can be diagnosed and structural properties can be obtained. The thermodynamic properties – temperature, density and ionisation state, were all measured using a combination of non-invasive, high accuracy, X-ray diagnostics and advanced numerical simulations. The experiment has revealed that the matter at the centre of planets is in a state that is intermediate between a solid and a gas over lengths larger than 0.3 nanometres. To put this into context, 1 nanometre equates to less than 1/10000th of a human hair! Results showed that extreme matter behaves as a charged liquid, but at smaller distances it acts more like a gas.

Dr Gianluca Gregori, of the University of Oxford and STFC’s Central Laser Facility said: “The study of warm dense matter states, in this experiment on lithium, shows practical applications for controlled thermonuclear fusion, and it also represents significant understanding relating to astrophysical environments found in the core of planets and the crusts of old stars. This research therefore makes it not only possible to formulate more accurate models of planetary dynamics, but also to extend our comprehension of controlled thermonuclear fusion where such states of matter, that is liquid and gas, must be crossed to initiate fusion reactions. This work expands our knowledge of complex systems of particles where the laws that regulate their motion are both classical and quantum mechanical. ”

Professor Mike Dunne, Director of the Central Laser Facility at STFC said: “Using high power lasers to find solutions to astrophysical issues is an area that has been highly active at STFC for some time. We are very excited that the Vulcan laser has contributed to such a significant piece of research. The use of extremely powerful lasers is proving to be a particularly effective approach to delivering long-term solutions for carbon-free energy.”

Wendy Taylor | alfa
Further information:
http://www.stfc.ac.uk
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1103.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>