Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets from within planets pave way for cleaner energy

23.10.2008
Research that has provided a deeper understanding into the centre of planets could also provide the way forward in the world’s quest for cleaner energy.

An international team of scientists, led by the University of Oxford, working alongside researchers at the Science and Technology Facilities Council’s (STFC) Central Laser Facility, has gained a deeper insight into the hot, dense matter found at the centre of planets and as a result, has provided further understanding into controlled thermonuclear fusion. The full paper on this research has been published, 19 October, in the scientific journal, Nature Physics.

This deeper insight into planets could extend our comprehension of fusion energy – the same energy that powers the sun, and laser driven fusion as a future energy source. Fusion energy is widely considered an attractive, environmentally clean power source using sea water as its principal source of fuel, where no greenhouse gasses or long lived radioactive waste materials are produced.

Using STFC’s Vulcan laser, the team has used an intense beam of X-rays to successfully identify and reproduce conditions found inside the core of planets, where solid matter has a temperature in excess of 50,000 degrees. The understanding of the complex state of matter in these extreme conditions represents one of the grand challenges of contemporary physics. The results from the Vulcan experiments are intended to improve our models of Jupiter and Saturn and to obtain better constraints on their composition and the age of the Solar System.

Using inelastic X-ray scattering measurements on a compressed lithium sample, it was shown how hot, dense matter states can be diagnosed and structural properties can be obtained. The thermodynamic properties – temperature, density and ionisation state, were all measured using a combination of non-invasive, high accuracy, X-ray diagnostics and advanced numerical simulations. The experiment has revealed that the matter at the centre of planets is in a state that is intermediate between a solid and a gas over lengths larger than 0.3 nanometres. To put this into context, 1 nanometre equates to less than 1/10000th of a human hair! Results showed that extreme matter behaves as a charged liquid, but at smaller distances it acts more like a gas.

Dr Gianluca Gregori, of the University of Oxford and STFC’s Central Laser Facility said: “The study of warm dense matter states, in this experiment on lithium, shows practical applications for controlled thermonuclear fusion, and it also represents significant understanding relating to astrophysical environments found in the core of planets and the crusts of old stars. This research therefore makes it not only possible to formulate more accurate models of planetary dynamics, but also to extend our comprehension of controlled thermonuclear fusion where such states of matter, that is liquid and gas, must be crossed to initiate fusion reactions. This work expands our knowledge of complex systems of particles where the laws that regulate their motion are both classical and quantum mechanical. ”

Professor Mike Dunne, Director of the Central Laser Facility at STFC said: “Using high power lasers to find solutions to astrophysical issues is an area that has been highly active at STFC for some time. We are very excited that the Vulcan laser has contributed to such a significant piece of research. The use of extremely powerful lasers is proving to be a particularly effective approach to delivering long-term solutions for carbon-free energy.”

Wendy Taylor | alfa
Further information:
http://www.stfc.ac.uk
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1103.html

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>