Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching Salt for Answers About Life on Earth, Mars

13.08.2012
Wichita State University associate professor Mark Schneegurt recently had a paper published in the journal "Astrobiology."

His paper focused on bacteria that live in environments that are salty, but not with sodium chloride – the kind of salt we're used to. It has to do with magnesium sulfate, also known as Epsom salt.

Researchers have discovered that not only is there evidence of liquid water on Mars, but the planet is also rich with magnesium sulfate.

One of the questions Schneegurt is seeking an answer to is whether microbial life on Earth can grow at these high concentrations of magnesium sulfate.

"This impacts our understanding of what ancient or current life on Mars may be like," he said. "What single discovery could have a greater impact on our philosophy and culture, how we view ourselves in the universe, than finding life on another planet?"

Finding life on Mars?

Other questions his paper and research deal with include:

•Are there any microbes on Earth that may be able to survive on Mars?

•How can we protect our search for life on Mars by preventing terrestrial microbes from infecting Mars when a spacecraft lands?

•Are epsotolerant microbes a glimpse at what life may have been like – or is like – on Mars?

Schneegurt said it's been hypothesized that living in high magnesium sulfate may be the hardest part of living on Mars, but his contention is that it's not as difficult as some scientists think.

Part of his research also focuses on searching for life in lakes with high magnesium sulfate levels, as well as searching for similar life in spacecraft assembly facility clean rooms.

Schneegurt and his research team have been working at Hot Lake in Washington and Basque Lake in British Columbia, and have isolated hundreds of microbes that grow at high magnesium sulfate concentrations. The goal is to characterize those microbes and see if they can also find them in spacecraft assembly facilities.

"If we bring life with us and it can grow on Mars, this makes it more difficult to be sure that any life we find on Mars actually comes from Mars," he said. "It also will impact our efforts in forward planetary protection, where life from Earth contaminates Mars when a spacecraft lands."

Is this research important? NASA and the astrobiology community think so, Schneegurt said.

After receiving a small Kansas NASA EPSCoR (Experimental Program to Stimulate Competitive Research) grant in 2009, Schneegurt received a NASA grant through the ROSES program and the Planetary Protection group at JPL (Jet Propulsion Laboratory).

Schneegurt said not only can his research teach us more about life on Mars. It can teach us about our own planet.

"Our work has relevance to the origins of life on Earth, since life may have arisen from a briny tidal pool." he said.

Mark Schneegurt | Newswise Science News
Further information:
http://www.wichita.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>