Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Urchin Yields a Key Secret of Biomineralization

28.10.2008
The teeth and bones of mammals, the protective shells of mollusks, and the needle-sharp spines of sea urchins and other marine creatures are made-from-scratch wonders of nature.

Used to crush food, for structural support and for defense, the materials of which shells, teeth and bones are composed are the strongest and most durable in the animal world, and scientists and engineers have long sought to mimic them.

Now, harnessing the process of biomineralization may be closer to reality as an international team of scientists has detailed a key and previously hidden mechanism to transform amorphous calcium carbonate into calcite, the stuff of seashells. The new insight promises to inform the development of new, superhard materials, microelectronics and micromechanical devices.

In a report today (Oct. 27) in the Proceedings of the National Academy of Sciences (PNAS), a group led by University of Wisconsin-Madison physicist Pupa Gilbert describes how the lowly sea urchin transforms calcium carbonate — the same material that forms “lime” deposits in pipes and boilers — into the crystals that make up the flint-hard shells and spines of marine animals. The mechanism, the authors write, could “well represent a common strategy in biomineralization….”

“If we can harness these mechanisms, it will be fantastically important for technology,” argues Gilbert, a UW-Madison professor of physics. “This is nature’s bottom-up nanofabrication. Maybe one day we will be able to use it to build microelectronic or micromechanical devices.”

Gilbert, who worked with colleagues from Israel’s Weizmann Institute of Science, the University of California at Berkeley and the Lawrence Berkeley National Laboratory, used a novel microscope that employs the soft-X-rays produced by synchrotron radiation to observe how the sea urchin builds its spicules, the sharp crystalline “bones” that constitute the animal’s endoskeleton at the larval stage.

Similar to teeth and bones, the sea urchin spicule is a biomineral, a composite of organic material and mineral components that the animal synthesizes from scratch, using the most readily available elements in sea water: calcium, oxygen and carbon. The fully formed spicule is composed of a single crystal with an unusual morphology. It has no facets and within 48 hours of fertilization assumes a shape that looks very much like the Mercedes-Benz logo.

These crystal shapes, as those of tooth enamel, eggshells or snails, are very different from the familiar faceted crystals grown through non-biological processes in nature. “To achieve such unusual — and presumably more functional — morphologies, the organisms deposit a disordered amorphous mineral phase first, and then let it slowly transform into a crystal, in which the atoms are neatly aligned into a lattice with a specific and regular orientation, while maintaining the unusual morphology,” Gilbert notes.

The question the Wisconsin physicist and her colleagues sought to answer was how this amorphous-to-crystalline transition occurs. The sea urchin larval spicule is a model system for biominerals, and the first one in which the amorphous calcium carbonate precursor was discovered in 1997 by the same Israeli group co-authoring the current PNAS paper. A similar amorphous-to-crystalline transition has since been observed in adult sea urchin spines, in mollusk shells, in zebra fish bones and in tooth enamel. The resulting biominerals are extraordinarily hard and fracture resistant, compared to the minerals of which they are made.

“The amorphous minerals are deposited and they are completely disordered,” Gilbert explains. “So the question we addressed is ‘how does crystallinity propagate through the amorphous mineral?’”

To answer it, Gilbert and her colleagues observed spicule development in 2- to 3-day-old sea urchin larvae. The sea urchin spicule is formed inside a clump of specialized cells and begins as the animal lays down a single crystal of calcite in the form of a rhombohedral seed, from which the rest of the spicule is formed. Starting from the crystalline center, three arms extend at 120 degrees from each other, as in the hood ornament of a Mercedes-Benz. The three radii are initially amorphous calcium carbonate, but slowly convert to calcite.

We tried to find evidence of a massive crystal growth, with a well defined growth front, propagating from the central crystal through the amorphous material, but we never observed anything like that,” Gilbert says. “What we found, instead, is that 40-100 nanometer amorphous calcium carbonate particles aggregate into the final morphology. One starts converting to crystalline calcite, then another immediately adjacent converts as well, and another, and so on in a three-dimensional domino effect. The pattern of crystallinity, however, is far from straight. It resembles a random walk, or a fractal, like lightning in the sky or water percolating through a porous medium,” explains Gilbert.

The new work, according to Gilbert, brings science a key step closer to a thorough understanding of how biominerals form and transform. Knowing the step-by-step process may permit researchers to develop new crystal structures that can be used in applications ranging from new microelectronic devices to medical applications.

The new study was funded by the National Science Foundation and the U.S. Department of Energy.

CONTACT: Pupa Gilbert, (608) 262-5829, pupa@physics.wisc.edu

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>