Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Urchin Yields a Key Secret of Biomineralization

28.10.2008
The teeth and bones of mammals, the protective shells of mollusks, and the needle-sharp spines of sea urchins and other marine creatures are made-from-scratch wonders of nature.

Used to crush food, for structural support and for defense, the materials of which shells, teeth and bones are composed are the strongest and most durable in the animal world, and scientists and engineers have long sought to mimic them.

Now, harnessing the process of biomineralization may be closer to reality as an international team of scientists has detailed a key and previously hidden mechanism to transform amorphous calcium carbonate into calcite, the stuff of seashells. The new insight promises to inform the development of new, superhard materials, microelectronics and micromechanical devices.

In a report today (Oct. 27) in the Proceedings of the National Academy of Sciences (PNAS), a group led by University of Wisconsin-Madison physicist Pupa Gilbert describes how the lowly sea urchin transforms calcium carbonate — the same material that forms “lime” deposits in pipes and boilers — into the crystals that make up the flint-hard shells and spines of marine animals. The mechanism, the authors write, could “well represent a common strategy in biomineralization….”

“If we can harness these mechanisms, it will be fantastically important for technology,” argues Gilbert, a UW-Madison professor of physics. “This is nature’s bottom-up nanofabrication. Maybe one day we will be able to use it to build microelectronic or micromechanical devices.”

Gilbert, who worked with colleagues from Israel’s Weizmann Institute of Science, the University of California at Berkeley and the Lawrence Berkeley National Laboratory, used a novel microscope that employs the soft-X-rays produced by synchrotron radiation to observe how the sea urchin builds its spicules, the sharp crystalline “bones” that constitute the animal’s endoskeleton at the larval stage.

Similar to teeth and bones, the sea urchin spicule is a biomineral, a composite of organic material and mineral components that the animal synthesizes from scratch, using the most readily available elements in sea water: calcium, oxygen and carbon. The fully formed spicule is composed of a single crystal with an unusual morphology. It has no facets and within 48 hours of fertilization assumes a shape that looks very much like the Mercedes-Benz logo.

These crystal shapes, as those of tooth enamel, eggshells or snails, are very different from the familiar faceted crystals grown through non-biological processes in nature. “To achieve such unusual — and presumably more functional — morphologies, the organisms deposit a disordered amorphous mineral phase first, and then let it slowly transform into a crystal, in which the atoms are neatly aligned into a lattice with a specific and regular orientation, while maintaining the unusual morphology,” Gilbert notes.

The question the Wisconsin physicist and her colleagues sought to answer was how this amorphous-to-crystalline transition occurs. The sea urchin larval spicule is a model system for biominerals, and the first one in which the amorphous calcium carbonate precursor was discovered in 1997 by the same Israeli group co-authoring the current PNAS paper. A similar amorphous-to-crystalline transition has since been observed in adult sea urchin spines, in mollusk shells, in zebra fish bones and in tooth enamel. The resulting biominerals are extraordinarily hard and fracture resistant, compared to the minerals of which they are made.

“The amorphous minerals are deposited and they are completely disordered,” Gilbert explains. “So the question we addressed is ‘how does crystallinity propagate through the amorphous mineral?’”

To answer it, Gilbert and her colleagues observed spicule development in 2- to 3-day-old sea urchin larvae. The sea urchin spicule is formed inside a clump of specialized cells and begins as the animal lays down a single crystal of calcite in the form of a rhombohedral seed, from which the rest of the spicule is formed. Starting from the crystalline center, three arms extend at 120 degrees from each other, as in the hood ornament of a Mercedes-Benz. The three radii are initially amorphous calcium carbonate, but slowly convert to calcite.

We tried to find evidence of a massive crystal growth, with a well defined growth front, propagating from the central crystal through the amorphous material, but we never observed anything like that,” Gilbert says. “What we found, instead, is that 40-100 nanometer amorphous calcium carbonate particles aggregate into the final morphology. One starts converting to crystalline calcite, then another immediately adjacent converts as well, and another, and so on in a three-dimensional domino effect. The pattern of crystallinity, however, is far from straight. It resembles a random walk, or a fractal, like lightning in the sky or water percolating through a porous medium,” explains Gilbert.

The new work, according to Gilbert, brings science a key step closer to a thorough understanding of how biominerals form and transform. Knowing the step-by-step process may permit researchers to develop new crystal structures that can be used in applications ranging from new microelectronic devices to medical applications.

The new study was funded by the National Science Foundation and the U.S. Department of Energy.

CONTACT: Pupa Gilbert, (608) 262-5829, pupa@physics.wisc.edu

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>