Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC’s ‘Gordon’ Supercomputer Crunches Collider Data

08.04.2013
Gordon, the unique supercomputer launched last year by the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, recently completed its most data-intensive task so far: rapidly processing raw data from almost one billion particle collisions as part of a project to help define the future research agenda for the Large Hadron Collider (LHC).

Under a partnership between a team of UC San Diego physicists and the Open Science Grid (OSG), a multi-disciplinary research partnership funded by the U.S. Department of Energy and the National Science Foundation, Gordon has been providing auxiliary computing capacity by processing massive data sets generated by the Compact Muon Solenoid, or CMS, one of two large general-purpose particle detectors at the LHC used by researchers to find the elusive Higgs particle.

“This exciting project has been the single most data-intensive exercise yet for Gordon since we completed large-scale acceptance testing back in early 2012,” said SDSC Director Michael Norman, who is also an astrophysicist involved in research studying the origins of the universe. “I’m pleased that we were able to make Gordon’s capabilities available under this partnership between UC San Diego, the OSG, and the CMS project.”

The around-the-clock data processing run on Gordon was completed in about four weeks’ time, making the data available for analysis several months ahead of schedule. About 1.7 million core hours – or about 15% of Gordon’s total compute capacity - were dedicated to this task, with more than 125 terabytes of data streaming through Gordon’s nodes and into SDSC’s Data Oasis storage system for further analysis. Just one terabyte of data, or one trillion bytes, equals the information printed on paper made from 50,000 trees.

“Access to Gordon, and its excellent computing speed due to its flash-based memory, really helped push forward the processing schedule for us,” said Frank Wuerthwein, a professor of physics at UC San Diego and a member of the CMS project. “With only a few weeks’ notice, we were able to gain access to Gordon and complete the runs, making the data available for analysis in time to provide crucial input toward international planning meetings on the future of particle physics.”

“Giving us access to the Gordon supercomputer effectively doubled the data processing compute power available to us,” added Lothar Bauerdick, OSG’s executive director and the U.S. software and computing manager for the CMS project. “This gives CMS scientists precious months to get to their science analysis of the data reconstructed at SDSC.”

The UC San Diego-OSG collaboration comes as the LHC was shut down in February 2013 to make numerous upgrades during the next two years. One major activity during the shutdown includes the development of plans for efficient, effective searches once the LHC is back in operation. To do that – and to have time enough to upgrade equipment – researchers must also sift through massive amounts of stockpiled data to help define future research agendas.

“Unfortunately, the shutdown schedule meant that the parked data would not be available for analysis this summer, and possibly not even for deriving meaningful contributions to planning documents for future upgrades of the experiment that are due this fall,” explained Wuerthwein.

The Hunt for Dark Matter

With the recent discovery and later confirmation in March of the Higgs boson – the last missing piece of the standard model of particle physics – scientists are now setting their sights on discovering new physics beyond the standard model. The next big thing is to search for dark matter, according to Wuerthwein.

“For the Higgs, we knew exactly how to search for it given theoretical predictions based on past experimental results,” said Wuerthwein, who is heading up the search for dark matter for the entire CMS team. “For dark matter, the situation is much more hazy. We hope to produce dark matter at the LHC in cascade decays of a whole spectrum of new fundamental particles, the lowest mass of which is dark matter. But the details of this spectrum of masses are unknown. To have sensitivity to a larger range of possible mass spectra, we needed to write more data to tape so we would be able to carefully analyze it later.”

The origin of this spectrum of new fundamental particles is a new kind of symmetry of nature called Supersymmetry, or SUSY. “Underlying this symmetry is a fascinating but theoretical conjecture with little to no physical evidence so far,” noted Wuerthwein. “It's fascinating because it could provide an ordering principle that allows for all known physical forces to be unified during the earliest times of the ‘Big Bang’ or birth of the universe, while providing an explanation for dark matter, and resolving some of the outstanding questions about details of the Higgs mechanism and mass.”

UC San Diego researchers and CMS team members, in addition to Wuerthwein, include Jim Branson, Vivek Sharma, and Avi Yagil, all of whom played major roles in the discovery of the Higgs particle and will continue to make meaningful contributions to future related research.

“UC San Diego has been one of the most successful institutions in the global hunt for the Higgs particle discovery at the LHC,” said Wuerthwein, who is leading the university’s search for dark matter.

Wuerthwein and his colleagues will present additional details of the CMS collaboration at the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP) to be in Amsterdam, The Netherlands October 14-18, 2013. More about UC San Diego’s role in the quest to find the Higgs particle can be found at http://physicalsciences.ucsd.edu/higgs/

Jan Zverina | Newswise
Further information:
http://www.sdsc.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>