Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SDSC’s ‘Gordon’ Supercomputer Crunches Collider Data

08.04.2013
Gordon, the unique supercomputer launched last year by the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, recently completed its most data-intensive task so far: rapidly processing raw data from almost one billion particle collisions as part of a project to help define the future research agenda for the Large Hadron Collider (LHC).

Under a partnership between a team of UC San Diego physicists and the Open Science Grid (OSG), a multi-disciplinary research partnership funded by the U.S. Department of Energy and the National Science Foundation, Gordon has been providing auxiliary computing capacity by processing massive data sets generated by the Compact Muon Solenoid, or CMS, one of two large general-purpose particle detectors at the LHC used by researchers to find the elusive Higgs particle.

“This exciting project has been the single most data-intensive exercise yet for Gordon since we completed large-scale acceptance testing back in early 2012,” said SDSC Director Michael Norman, who is also an astrophysicist involved in research studying the origins of the universe. “I’m pleased that we were able to make Gordon’s capabilities available under this partnership between UC San Diego, the OSG, and the CMS project.”

The around-the-clock data processing run on Gordon was completed in about four weeks’ time, making the data available for analysis several months ahead of schedule. About 1.7 million core hours – or about 15% of Gordon’s total compute capacity - were dedicated to this task, with more than 125 terabytes of data streaming through Gordon’s nodes and into SDSC’s Data Oasis storage system for further analysis. Just one terabyte of data, or one trillion bytes, equals the information printed on paper made from 50,000 trees.

“Access to Gordon, and its excellent computing speed due to its flash-based memory, really helped push forward the processing schedule for us,” said Frank Wuerthwein, a professor of physics at UC San Diego and a member of the CMS project. “With only a few weeks’ notice, we were able to gain access to Gordon and complete the runs, making the data available for analysis in time to provide crucial input toward international planning meetings on the future of particle physics.”

“Giving us access to the Gordon supercomputer effectively doubled the data processing compute power available to us,” added Lothar Bauerdick, OSG’s executive director and the U.S. software and computing manager for the CMS project. “This gives CMS scientists precious months to get to their science analysis of the data reconstructed at SDSC.”

The UC San Diego-OSG collaboration comes as the LHC was shut down in February 2013 to make numerous upgrades during the next two years. One major activity during the shutdown includes the development of plans for efficient, effective searches once the LHC is back in operation. To do that – and to have time enough to upgrade equipment – researchers must also sift through massive amounts of stockpiled data to help define future research agendas.

“Unfortunately, the shutdown schedule meant that the parked data would not be available for analysis this summer, and possibly not even for deriving meaningful contributions to planning documents for future upgrades of the experiment that are due this fall,” explained Wuerthwein.

The Hunt for Dark Matter

With the recent discovery and later confirmation in March of the Higgs boson – the last missing piece of the standard model of particle physics – scientists are now setting their sights on discovering new physics beyond the standard model. The next big thing is to search for dark matter, according to Wuerthwein.

“For the Higgs, we knew exactly how to search for it given theoretical predictions based on past experimental results,” said Wuerthwein, who is heading up the search for dark matter for the entire CMS team. “For dark matter, the situation is much more hazy. We hope to produce dark matter at the LHC in cascade decays of a whole spectrum of new fundamental particles, the lowest mass of which is dark matter. But the details of this spectrum of masses are unknown. To have sensitivity to a larger range of possible mass spectra, we needed to write more data to tape so we would be able to carefully analyze it later.”

The origin of this spectrum of new fundamental particles is a new kind of symmetry of nature called Supersymmetry, or SUSY. “Underlying this symmetry is a fascinating but theoretical conjecture with little to no physical evidence so far,” noted Wuerthwein. “It's fascinating because it could provide an ordering principle that allows for all known physical forces to be unified during the earliest times of the ‘Big Bang’ or birth of the universe, while providing an explanation for dark matter, and resolving some of the outstanding questions about details of the Higgs mechanism and mass.”

UC San Diego researchers and CMS team members, in addition to Wuerthwein, include Jim Branson, Vivek Sharma, and Avi Yagil, all of whom played major roles in the discovery of the Higgs particle and will continue to make meaningful contributions to future related research.

“UC San Diego has been one of the most successful institutions in the global hunt for the Higgs particle discovery at the LHC,” said Wuerthwein, who is leading the university’s search for dark matter.

Wuerthwein and his colleagues will present additional details of the CMS collaboration at the 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP) to be in Amsterdam, The Netherlands October 14-18, 2013. More about UC San Diego’s role in the quest to find the Higgs particle can be found at http://physicalsciences.ucsd.edu/higgs/

Jan Zverina | Newswise
Further information:
http://www.sdsc.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms

05.12.2016 | Life Sciences

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>