Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists’ Work May Lead to Mission to Find Out What’s Inside Asteroids

04.09.2014

Future asteroid mining operations and how we deal with an impending strike could be influenced by research on a potential NASA mission that’s being done by team that includes a University of Alabama in Huntsville (UAH) scientist.

“If you identify an asteroid coming toward us, how you deal with it could depend on its density and structure,” says Dr. Richard S. Miller, a UAH physics professor. “Likewise, if this technique pans out, you could imagine sending out a specialized telescope to determine what the densities and interior structure of various asteroids are, then decide on the basis of that information what ones to mine.”


Richard S. Miller / UAH

By detecting the number of muons that pass through the object at left, scientists can discover and measure the size of its core, shown reconstructed at right.

Little is now known about asteroid interior density and composition. Are they uniform or are they what astrophysicists call differentiated bodies, having denser and less-dense areas?

“Asteroids are time capsules of the early solar system,” Dr. Miller says. “We know about their surface properties and we can also infer the mass of some asteroids. But what we want to do is actually probe the interior of asteroids and determine information about their structure, are there interior density gradients, what is the composition – is it solid or like Swiss cheese – and do they have cores or not? Is it a pile of rubble? It turns out this structure can tell us a great deal about the conditions present during the early epochs of solar system formation and its evolution.”

To find that out, the team’s scientists will be borrowing imaging technology concepts developed for medicine and high-energy physics. They are developing a mission concept to probe asteroids using a technique similar to human computerized tomography (CT) scans. Dr. Miller is a co-investigator in a collaborative effort with the Planetary Science Institute (PSI), NASA’s Johnson Space Center, the Universities Space Research Association’s Arecibo Observatory (Arecibo/USRA) and the University of Houston to do the fundamental research and design that could lead to such a mission.

Led by principal investigator Dr. Tom Prettyman, senior scientist at PSI, the group has $500,000 in funding from the NASA Innovative Advanced Concepts (NIAC) Phase II program. The team’s two-year proposal, “Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers,” is one of only five projects selected for funding. Other funded collaborators include Dr. Steven Koontz, NASA Johnson Space Center; Dr. Michael Nolan, Arecibo/USRA; Dr. Lawrence Pinsky, University of Houston; and Dr. Mark Sykes, PSI.

The team proposes using ever-present cosmic rays to perform its measurements. All objects in space are constantly bombarded by these particles, which are thought to be the remnants of massive supernovas and are primarily protons. On Earth, the atmosphere breaks them up and shields us from direct hits.

“In space, on contact with dense matter like the moon’s surface or other airless planetary bodies, they interact within the first few centimeters of depth and create a shower of particles,” Dr. Miller says. Studying those interactions has provided us surface knowledge of asteroids. “But cosmic rays also contain muons, which are particles similar to electrons, but which can go a lot farther into the asteroid, in some cases up to one kilometer.”

The idea is to position a telescope to orbit the asteroid and measure the number and trajectories of the muons passing through it.

“Muons are like an SUV,” says Dr. Miller. “Once they are moving it is not easy to knock them off their course.”

An asteroid composed of varying densities of material would return a different pattern than one with a single density, just as a CT scan differentiates between densities of structures in the body. Likewise, if an asteroid has a denser core, it will stop muons from passing through and the telescope will detect the change. That process is called muon tomography and is well understood. Developed in the 1950s, it was even used in the 1960s by Luis Alvarez to map the Pyramid of Chephren.

“What’s different about a CT scan is that instead of using cosmic rays and muons to determine densities, a CT scan uses x-rays,” Dr. Miller says.

To mature the concept, the scientists must first solve a number of fundamental challenges. They’ll be using computer modeling to work on:

• Detailed estimates of the particle signatures, including muons and other radiations that will be present in deep space and in the neighborhood of any asteroids;
• Doing the initial work on the muon telescope’s design and operation. There are competing ideas, and the team will evaluate a variety of performance tradeoffs;
• The development and implementation of advanced algorithms for asteroid structure reconstruction;
• Establishing the preliminary outlines of how a proposed NASA mission would be conducted, its feasibility and making predictions of the ultimate science return.

“What it has to do is detect those muons and give us a direction they are coming from,” Dr. Miller says of the telescope, but getting to that goal involves tradeoffs.

For example, the bigger the area the telescope can scan as it orbits, the less time it will take to get results encompassing an entire asteroid being studied. But the greater the telescope’s size, the more resources will be involved to launch the mission. Also, to tell where the muons are coming from, the telescope will have to be able to tell directional “up” from “down.”

Dr. Miller says he was already exploring using muons to probe asteroids when he attended a conference and found that PSI’s Dr. Prettyman was working on the same thing.

“This is a good story of how you had two independent groups who were both looking at the same idea,” Dr. Miller says, “and we have joined forces to make a stronger project.”

Contact Information

Jim Steele
Research Writer/Editor
jim.steele@uah.edu
Phone: 256-824-2772

Jim Steele | newswise
Further information:
http://www.uah.edu

Further reports about: Arecibo CT Huntsville NASA PSI Space asteroids fundamental particles physics structure technique

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>