Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists’ Work May Lead to Mission to Find Out What’s Inside Asteroids

04.09.2014

Future asteroid mining operations and how we deal with an impending strike could be influenced by research on a potential NASA mission that’s being done by team that includes a University of Alabama in Huntsville (UAH) scientist.

“If you identify an asteroid coming toward us, how you deal with it could depend on its density and structure,” says Dr. Richard S. Miller, a UAH physics professor. “Likewise, if this technique pans out, you could imagine sending out a specialized telescope to determine what the densities and interior structure of various asteroids are, then decide on the basis of that information what ones to mine.”


Richard S. Miller / UAH

By detecting the number of muons that pass through the object at left, scientists can discover and measure the size of its core, shown reconstructed at right.

Little is now known about asteroid interior density and composition. Are they uniform or are they what astrophysicists call differentiated bodies, having denser and less-dense areas?

“Asteroids are time capsules of the early solar system,” Dr. Miller says. “We know about their surface properties and we can also infer the mass of some asteroids. But what we want to do is actually probe the interior of asteroids and determine information about their structure, are there interior density gradients, what is the composition – is it solid or like Swiss cheese – and do they have cores or not? Is it a pile of rubble? It turns out this structure can tell us a great deal about the conditions present during the early epochs of solar system formation and its evolution.”

To find that out, the team’s scientists will be borrowing imaging technology concepts developed for medicine and high-energy physics. They are developing a mission concept to probe asteroids using a technique similar to human computerized tomography (CT) scans. Dr. Miller is a co-investigator in a collaborative effort with the Planetary Science Institute (PSI), NASA’s Johnson Space Center, the Universities Space Research Association’s Arecibo Observatory (Arecibo/USRA) and the University of Houston to do the fundamental research and design that could lead to such a mission.

Led by principal investigator Dr. Tom Prettyman, senior scientist at PSI, the group has $500,000 in funding from the NASA Innovative Advanced Concepts (NIAC) Phase II program. The team’s two-year proposal, “Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers,” is one of only five projects selected for funding. Other funded collaborators include Dr. Steven Koontz, NASA Johnson Space Center; Dr. Michael Nolan, Arecibo/USRA; Dr. Lawrence Pinsky, University of Houston; and Dr. Mark Sykes, PSI.

The team proposes using ever-present cosmic rays to perform its measurements. All objects in space are constantly bombarded by these particles, which are thought to be the remnants of massive supernovas and are primarily protons. On Earth, the atmosphere breaks them up and shields us from direct hits.

“In space, on contact with dense matter like the moon’s surface or other airless planetary bodies, they interact within the first few centimeters of depth and create a shower of particles,” Dr. Miller says. Studying those interactions has provided us surface knowledge of asteroids. “But cosmic rays also contain muons, which are particles similar to electrons, but which can go a lot farther into the asteroid, in some cases up to one kilometer.”

The idea is to position a telescope to orbit the asteroid and measure the number and trajectories of the muons passing through it.

“Muons are like an SUV,” says Dr. Miller. “Once they are moving it is not easy to knock them off their course.”

An asteroid composed of varying densities of material would return a different pattern than one with a single density, just as a CT scan differentiates between densities of structures in the body. Likewise, if an asteroid has a denser core, it will stop muons from passing through and the telescope will detect the change. That process is called muon tomography and is well understood. Developed in the 1950s, it was even used in the 1960s by Luis Alvarez to map the Pyramid of Chephren.

“What’s different about a CT scan is that instead of using cosmic rays and muons to determine densities, a CT scan uses x-rays,” Dr. Miller says.

To mature the concept, the scientists must first solve a number of fundamental challenges. They’ll be using computer modeling to work on:

• Detailed estimates of the particle signatures, including muons and other radiations that will be present in deep space and in the neighborhood of any asteroids;
• Doing the initial work on the muon telescope’s design and operation. There are competing ideas, and the team will evaluate a variety of performance tradeoffs;
• The development and implementation of advanced algorithms for asteroid structure reconstruction;
• Establishing the preliminary outlines of how a proposed NASA mission would be conducted, its feasibility and making predictions of the ultimate science return.

“What it has to do is detect those muons and give us a direction they are coming from,” Dr. Miller says of the telescope, but getting to that goal involves tradeoffs.

For example, the bigger the area the telescope can scan as it orbits, the less time it will take to get results encompassing an entire asteroid being studied. But the greater the telescope’s size, the more resources will be involved to launch the mission. Also, to tell where the muons are coming from, the telescope will have to be able to tell directional “up” from “down.”

Dr. Miller says he was already exploring using muons to probe asteroids when he attended a conference and found that PSI’s Dr. Prettyman was working on the same thing.

“This is a good story of how you had two independent groups who were both looking at the same idea,” Dr. Miller says, “and we have joined forces to make a stronger project.”

Contact Information

Jim Steele
Research Writer/Editor
jim.steele@uah.edu
Phone: 256-824-2772

Jim Steele | newswise
Further information:
http://www.uah.edu

Further reports about: Arecibo CT Huntsville NASA PSI Space asteroids fundamental particles physics structure technique

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>