Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock the secrets of exploding plasma clouds on the sun

08.11.2010
News from the 52nd annual meeting of the APS Division of Plasma Physics

The Sun sporadically expels trillions of tons of million-degree hydrogen gas in explosions called coronal mass ejections (CMEs). Such clouds—an example is shown in Figure 1a—are enormous in size (spanning millions of miles) and are made up of magnetized plasma gases, so hot that hydrogen atoms are ionized.

CMEs are rapidly accelerated by magnetic forces to speeds of hundreds of kilometers per second to upwards of 2,000 kilometers per second in several tens of minutes. CMEs are closely related to solar flares and, when they impinge on the Earth, can trigger spectacular auroral displays.

They also induce strong electric currents in the Earth's plasma atmosphere (i.e., the magnetosphere and ionosphere), leading to outages in telecommunications and GPS systems and even the collapse of electric power grids if the disturbances are very severe.

Since the first observation of a solar flare in 1859, solar eruptions ("explosions") have attracted much attention from scientists around the world and have been studied with a succession of increasingly sophisticated international satellite missions in the past three decades. A major challenge has been that enormous and complicated plasma structures accelerating away from the Sun can only be observed remotely.

As a result, it has been difficult to test theoretical models to establish a correct understanding of the mechanisms that cause such eruptions. But in 2006, an international twin-satellite mission called STEREO was launched to continuously observe the erupting plasma structures from the Sun to the Earth.

Now, using the data from STEREO, new research by scientists at the Naval Research Laboratory (NRL) in Washington, D.C., demonstrates for the first time that the observed motion of erupting plasma clouds driven by magnetic forces can be correctly explained by a theoretical model. The work will be presented at the 52nd Annual Meeting of the APS Plasma Physics Division.

The theory, controversial when it was first proposed in 1989 by Dr. James Chen of NRL, is based on the concept that an erupting plasma cloud is a giant "magnetic flux rope," a rope of "twisted" magnetic field lines shaped like a partial donut. Chen and Valbona Kunkel, a doctoral student at George Mason University, have applied this model to the new STEREO data of CMEs and shown that the theoretical solutions agree with the measured trajectories of the ejected clouds within the entire field of view from the Sun to the Earth.

The position of the leading edge (LE) of a CME that erupted on December 24, 2007 were tracked by the STEREO-A spacecraft from the earliest stages of eruption to its arrival at 1 AU approximately five days later. The magnetic field and plasma parameters were measured by the STEREO-B spacecraft. The agreement between theory and data is within 1 percent of the measured position of the LE. Chen and Kunkel's results show that the theoretically predicted magnetic field and plasma properties are in excellent agreement with the measurements aboard STEREO-B. This is the first model that can replicate directly observed quantities near the Sun and the Earth as well as the actual trajectories of CMEs. Prior to STEREO, the motion of CMEs in the region corresponding to HI1 and HI2 data was not observed.

Interestingly, the basic forces acting on solar flux ropes are the same as those in laboratory plasma structures such as tokamaks developed to produce controlled fusion energy. The mechanism described by the theory is also potentially applicable to eruptions on other stars.

Saralyn Stewart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>