Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Optical Secrets of Jewel Beetles

27.07.2009
A small green beetle may have some interesting lessons to teach scientists about optics and liquid crystals – complex mechanisms the insect uses to create a shell so strikingly beautiful that for centuries it was used in jewelry.

In an article to be published in the July 24 issue of the journal Science, researchers provide a detailed analysis of how a jewel beetle (Chrysina gloriosa) creates the striking colors using a unique helical structure that reflects light of two specific colors – and of only one polarization: left circular polarization.

The reflecting structures used by the beetle consist predominately of three different polygonal shapes whose percentages vary with the curvature of the insect’s shell.

“Iridescent beetles, butterflies, certain sea organisms and many birds derive their unique colors from the interaction of light with physical structures on their external surfaces,” said Mohan Srinivasarao, a professor in the School of Polymer, Textile and Fiber Engineering at the Georgia Institute of Technology. “Understanding how these structures give rise to the stunning colors we see in nature could benefit the quest for miniature optical devices and photonics.”

With support from the National Science Foundation, Srinivasarao and colleagues Vivek Sharma, Matija Crne and Jung Ok Park used two different microscopy techniques to study the surface structures on the shell of the beetle. What they found confirmed earlier suggestions that the colors are produced from liquid crystalline material, which self-assembles into a complex arrangement of polygonal shapes each less than 10 microns in size.

“When we looked at the beetle’s surface, we found tiles in the shapes mostly of hexagons, pentagons and heptagons,” Srinivasarao said. “These patterns arise, we think, because of the nature of the cholesteric liquid crystal and how the liquid crystal phase structures itself at the interface between air and fluid. We think these patterns result because the liquid crystal must have defects on the surface when exposed to air, and those defects create the patterns in the beetle’s shell or exoskeleton.”

Because of simple geometric restrictions, the percentage of each shape depends on the curvature of that particular section of the shell. “This is really a pattern formation issue,” said Srinivasarao. “It is difficult to pack only hexagons onto a curved surface. On flat surfaces, there are fewer defects in the form of five- and seven-sided cells.”

In addition, the five- and seven-sided cells normally appear in pairs, an issue also dictated by the geometric difficulties of packing the shapes onto curved surfaces. The researchers found very similar structures in the ten different beetles purchased from an insect supply house.

Liquid crystalline materials are valuable industrially, used in displays for laptop computers, portable music players and other devices. They are also used in children’s thermometers, where temperature affects the color of light reflected from the material, indicating whether or not a child has a fever.

While the structures are determined genetically, their final form depends on the living conditions the beetle experiences during its growth and development, Srinivasarao noted.

The fact that these jewel beetles reflect circular polarization was identified in the early 1900s by a Nobel Prize-winning physicist, A.A. Michelson, who hypothesized that the circular polarization might result from a “screw structure” within the insect’s cuticle, but he did not elaborate on it further. The solidified structures produced from a cholesteric liquid crystal and its defects on the beetle’s shell reflect bright green light with a wavelength of 530 nanometers mixed with yellow light in a wavelength of 580 nanometers.

“The most dramatic way to get saturated color is through what this beetle does with the circularly-polarized light,” Srinivasarao said. “The reflection is very metallic and angle-dependent, and this is due to the helical pitch of the cholesteric liquid crystal.”

Sunlight normally contains light in equal quantities with a left circular polarization and a right circular polarization. The jewel beetle’s exoskeleton, however, reflects only light with a left circular polarization.

How the beetles benefit from the specific color and polarization isn’t known for sure, but scientists speculate that the optical properties may confuse predators, causing them to misjudge the location of the insects – or suggest that they may not be good to eat. The colors may also help the insects find mates.

In future research, Srinivasarao hopes to study other insects that use complex structures to create unique colors. He believes that scientists still have a lot to learn by studying the optical structures of beetles and other insects.

“We are just now starting to catch up with what these beetles have been doing for many, many years,” he said. “There are hundreds of thousand of species, and the way they generate color is just stunning – especially since it is all done with water-based systems, mostly based on the biopolymer chitin. This is self-assembly at several levels, and we need to learn a lot more to duplicate what these insects do.”

Technical Contact: Mohan Srinivasarao (404-894-9348); E-mail: (mohan.srinivasarao@ptfe.gatech.edu).

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>