Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists twist light to send data

26.06.2012
USC-led team demonstrates that beams of light can be twisted and combined to transmit data at dramatically increased speeds

A multi-national team led by USC with researchers hailing from the U.S., China, Pakistan and Israel has developed a system of transmitting data using twisted beams of light at ultra-high speeds – up to 2.56 terabits per second.

To put that in perspective, broadband cable (which you probably used to download this) supports up to about 30 megabits per second. The twisted-light system transmits more than 85,000 times more data per second.

Their work might be used to build high-speed satellite communication links, short free-space terrestrial links, or potentially be adapted for use in the fiber optic cables that are used by some Internet service providers.

"You're able to do things with light that you can't do with electricity," said Alan Willner, electrical engineering professor at the USC Viterbi School of Engineering and the corresponding author of an article about the research that was published in Nature Photonics on June 24. "That's the beauty of light; it's a bunch of photons that can be manipulated in many different ways at very high speed."

Willner and his colleagues used beam-twisting "phase holograms" to manipulate eight beams of light so that each one twisted in a DNA-like helical shape as it propagated in free space. Each of the beams had its own individual twist and can be encoded with "1" and "0" data bits, making each an independent data stream – much like separate channels on your radio.

Their demonstration transmitted the data over open space in a lab, attempting to simulate the sort of communications that might occur between satellites in space. Among the next steps for the research field will be to advance how it could be adapted for use in fiber optics, like those frequently used to transmit data over the Internet.

The team's work builds on research done by Leslie Allen, Anton Zeilinger, Miles Padgett and their colleagues at several European universities.

"We didn't invent the twisting of light, but we took the concept and ramped it up to a terabit-per-second," Willner said. His team included Jian Wang, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren and Yang Yue from USC; Samuel Dolinar from NASA's Jet Propulsion Laboratory; and Moshe Tur from Tel Aviv University.

Wang, the lead author, left USC after completing this research and is now a professor at the Huazhong University of Science and Technology in China.

This research was funded by the Defense Advance Research Projects Agency (DARPA) under the InPho (Information in a Photon) program.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>